
Ayacc User's Manual

Version 1.1

Arcadia Document UCI-94-01

March 1994

Designed by

David Taback and Deepak Tolani

Enhanced by

Ronald J. Schmalz

Yidong Chen

Arcadia Environment Research Project

Department of Information and Computer Science

University of California, Irvine

Contents

1 Introduction 1

2 Description 1

3 Command Line Interface 2
3.1 Overview : 3
3.2 Command Format : 3
3.3 Invoking Ayacc : 3
3.4 Command Line Errors : 4

4 Input to the Tool 4
4.1 Command Line Options : 4
4.2 Ayacc Speci�cation File : 6

4.2.1 Token Declarations Section : 8
4.2.2 Associating Ada Types with Grammar Symbols : : : : : : : : : : : 8
4.2.3 Rules Section : 10
4.2.4 Actions : 11
4.2.5 User Declarations : 12
4.2.6 User Supplied Routines : 14

4.3 Advanced Topics : 16
4.3.1 Ambiguity and Con
icts : 16
4.3.2 Precedence and Associativity : 18
4.3.3 Error Recovery : 22
4.3.4 Error Productions : 23
4.3.5 The Error Recovery Algorithm : 23
4.3.6 An Example of Error Recovery : 24
4.3.7 More Control over Error Recovery : : : : : : : : : : : : : : : : : : : 25
4.3.8 Automatic Error Recovery : 26

5 Error Messages 26
5.1 Internal Error Messages : 27
5.2 Fatal Error Messages : 27
5.3 Non Fatal Error Messages : 27

6 Known De�ciencies 28

7 Release Notes 29

A A Detailed Example 30

B Using the Verbose and Debug Options 36

i

C Automatic Error Recovery 43
C.1 User Error-correction Messages section : 43
C.2 Change in running the Parser : 44

C.2.1 Output : 44
C.2.2 Error Recovery : 45
C.2.3 User Error Messages : 46

D Di�erences between Yacc and Ayacc 47

E Ayacc Speci�cation File Guidelines 48

F How the Parser Works 50

G Porting Ayacc to Other Systems 51

Installing Ayacc 51

Reading arguments from the command line 51

ii

List of Figures

1 { Ayacc Command Line Speci�cation : 2
2 { Syntactic Relaxations in the Command Line Interface : : : : : : : : : : : : : 3
3 { Echoed Command Line Following Invocation : : : : : : : : : : : : : : : : : : 4
4 { Debug Option Informative Messages : 5
5 { Sample Calculator Grammar : 7
6 { Legal Ayacc Token Declarations : 8
7 { Specifying a Context Clause for the Tokens Package : : : : : : : : : : : : : : 9
8 { Typical Nonterminals : 10
9 { Sample User Declarations Section : 13
10 { Identi�er List Grammar and Actions : 49

iii

1 Introduction

Ayacc provides Ada programmers with a tool for the automatic construction of parsers.
The parsers are constructed from a high level description of a context free grammar. The
input to Ayacc consists of a BNF style speci�cation of a grammar accompanied by a set of
Ada program statements to be executed as each rule is recognized. Ayacc generates a set
of Ada program units that act as a parser for the speci�ed grammar. These program units
may be interfaced to additional user supplied routines to produce a functional program.
Ayacc was inspired by the popular UNIX utility, Yacc, and it closely mimics the features
and conventions of its C counterpart. The error recovery features are similar to those of
eyacc.

2 Description

The following chapter is intended to serve as a tutorial and reference guide to Ayacc.
No previous knowledge of Yacc is assumed although basic principles of compiler theory
such as context-free grammars, lexical analysis, and parsing are taken for granted. For
the sake of clarity, a consistent set of terminology is adopted in this chapter. The term
token denotes a structure recognized by a lexical analyzer and nonterminal refers to a
structure recognized by a parser. Grammar symbols collectively refers to nonterminals
and tokens.

Ayacc generates four Ada program units that may be compiled and interfaced to other
Ada code provided by the user. To enable the compilation of Ayacc output, the user must
provide a minimum of two routines: a lexical analyzer function and an error reporting
procedure. These routines may be kept inside the speci�cation �le or provided as external
modules.

Ayacc generates a total of four �les. Assuming that the original speci�cation �le is
named base.y, the corresponding Ayacc output �les would be: base tokens.ada,
base shift reduce.ada, base goto.ada, and base.ada. If the Error Recovery command line
parameter is on then an additional �le named base error report.ada is also generated. In
addition, Ayacc also generates a temporary �le, base.accs, which is automatically deleted
upon completion and should not be of concern to the user. A brief description of these �les
follows:

base.ada
The primary output of Ayacc. Procedure YYParse is generated into
this �le along with any Ada code provided in the declaration section at
the end of the speci�cation �le.

1

base tokens.ada
The tokens package that provides the type and variable declarations
needed by both YYParse and the user supplied lexical analyzer. The
package is named Base Tokens.

base shift reduce.ada base goto.ada
The parse tables used by YYParse. They are generated as separate
packages rather than nested within YYParse to prevent them from
being pushed onto the stack with each invocation of YYParse.
Strictly speaking, the tables could be placed within a single package,
however some Ada compilers may have problems compiling the large
preinitialized arrays which comprise the tables. The parse table
packages are named Base Goto and Base Shift Reduce respectively.

3 Command Line Interface

When the Ayacc command is entered without arguments, the following speci�cation is
displayed on the user's terminal.

��Ayacc: An Ada Parser Generator.
type Switch is (On, O�);

procedure Ayacc (File : in String;
C Lex : in Switch := O�;
Debug : in Switch := O�;
Summary : in Switch := On;
Verbose : in Switch := O�;
Error Recovery : in Switch := O�;
Extension : in String := ".a");

�� File Speci�es the Ayacc Input Source File.
�� C Lex Speci�es the Generation of a 'C' Lex Interface.
�� Debug Speci�es the Production of Debugging Output
�� By the Generated Parser.
�� Summary Speci�es the Printing of Statistics About the
�� Generated Parser.
�� Verbose Speci�es the Production of a Human Readable
�� Report of States in the Generated Parser.
�� Error Recovery Speci�es the Generation of Automatic
�� Error Recovery in the Generated Parser.
�� Extension Speci�es the File Extension to be Used for
�� Generated Ada Files.

Figure 1. Ayacc Command Line Speci�cation

2

3.1 Overview

The Ayacc command line interface is modeled after the syntax and semantics of Ada pro-
cedure calls. Both Named and Positional parameter associations and Default Parameters
are supported. 1 Although the command line interface does follow the syntax and seman-
tics of Ada, the strictness of these rules has been relaxed to improve the user interface.
The nature of these relaxations is discussed in the following section.

3.2 Command Format

The command line interface has several relaxations to promote friendlier usage. A summary
of these relaxations are listed in Figure 2.

1. Final Semicolon on the procedure call is optional.

2. Outermost Parentheses are optional.

3. Parentheses around aggregate parameters are optional when the aggregate consists
of only one component.

4. Commas in the parameter list are optional.

5. Quotes around string literals are optional.

Figure 2. Syntactic Relaxations in the Command Line Interface

3.3 Invoking Ayacc

When Ayacc is invoked, the command line interface analyzes the command line for the
correct number and types of parameters. If no errors are detected, the command line is
echoed to the terminal in the form of an Ada procedure call with all parameters displayed
as Named Associations. A typical invocation is shown in Figure 3. Once the command
line is analyzed, the parameters are passed on to the tool for processing. Note: Some
Operating Systems, for example Unix, may interpret the => prior to passing the argument
to the tool. As a result, any OS special characters should be escaped on the command line
to prevent interpretation.

1A complete discussion of this topic can be found in the Ada Language Reference Manual, x6.4-6.4.2.

3

ayacc parser.y debug => 2on

Ayacc (File => "parser.y",
C Lex => O�,
Debug => On,
Summary => On,
Verbose => O�,
Error Recovery => O�,
Extension => ".a");

Figure 3. Echoed Command Line Following Invocation

3.4 Command Line Errors

1. Invalid Named Association.

2. Invalid Parameter, Bad Parameter is not a legal value for type Parame-
ter Type.

3. Invalid Parameter Association, Bad Formal is not a valid Formal Parame-
ter.

4. Invalid Parameter Order, Positional arguments must precede Named.

5. Missing Positional Argument.

6. Unbalanced Parentheses.

4 Input to the Tool

4.1 Command Line Options

Input speci�es the Ayacc speci�cation �le which will be translated into an appropriate
parser. The format of the �le is described in the Ayacc Speci�cation File section.

C Lex speci�es the generation of an Ada interface to a lexical analyzer written in C.
When run with the C Lex option, Ayacc will generate a �le called base.h which contains a
sequence of #de�ne's for the tokens (analogous to the �le created by Yacc when run with
the -d option) and a package "Base C Lex" that converts integers returned by the C lexical
analyzer into their corresponding Ada enumeration type. This feature is particularly suited

2In Unix, => should be replaced with = n >.

4

to interfacing to lexical analyzers generated by the popular UNIX tool Lex or any lexical
analyzer that adheres to the conventions expected by Yacc.

When using the C Lex option, the user must supply a C function called get token
which returns an integer corresponding to a token recognized by the lexical analyzer. The
values returned by the lexical analyzer must adhere to the following conventions: Character
literals have the same value as their ASCII representation, and All other tokens have the
value are as de�ned in the base.h �le. It is the user's responsibility to insure that the C
lexical analyzer always returns an integer corresponding to a valid token or character literal.

The package Base C Lex contains the Ada function YYLex which converts the integer
returned by get token into the token enumeration type expected by the parser. The user
will have to make minor changes to YYLex if it is necessary for the lexical analyzer to set
the value of YYLVal or to perform actions when speci�c tokens are recognized.

Debug speci�es that Ayacc should generate a version of YYParse that prints the shift,
reduce, error, and accept actions as they are executed by the parser. Figure 4 lists the
messages produced by Ayacc in Debug mode.

1. Accepting Grammar...

2. Can't Discard End Of Input, Quitting...

3. Error Recovery Clobbers Token.

4. Error Recovery Popped Entire Stack, Aborting...

5. Examining State State.

6. Looking for State with Error as Valid Shift.

7. Reduce by Rule Rule Goto State State.

8. Shifted Error Token in State State.

9. Shift State on Input Symbol Token.

Figure 4. Debug Option Informative Messages
The output may be used with the Verbose option output �le to debug grammar speci�ca-
tions by identifying states where the parser behaves incorrectly. The debugging output is
also useful for observing error recovery mechanisms taken by the parser.

Verbose speci�es that Ayacc should generate a �le called base.verbose which contains a
readable form of the parser. This is very useful when the user wants to see the �nite state
machine associated with the parser. A detailed example of using the Debug and Verbose
option can be found in Appendix 2.

5

4.2 Ayacc Speci�cation File

Error Recovery speci�es that a parser which does automatic syntax error recovery is to be
generated. The generated parser will create a �le named base.lis when run which records
the parsed lines of the input text and speci�es where errors occurred. Further explanation
of this option can be found in Appendix C.

Extension speci�es the �le extension to be used for generated Ada �les. The default
value is ".a".

An Ayacc speci�cation consists of three parts: the token declarations, grammar rules,
and an optional user declarations. A double percent %% delimits each of these sections.
Ada style comments may appear anywhere in the speci�cation �le. A sample input �le
for a calculator grammar is shown in Figure 5. An optional fourth part is added if the
Error Recovery option is used. See Appendix C for more information.

6

�� Declarations Section

%token IDENTIFIER { Tokens which will be returned
%token NUMBER { by the lexical analyzer.

f

{Declarations that will be
{written to the tokens package.
subtype YYSType is Integer;

g

%% ||||||||||||||||||||-
�� Rules section

�� Rules specifying the syntax of arithmetic expressions.
�� "expression", "term", and "factor" are the nonterminals
�� recognized by the parser.

expression : term
j expression '+' term
j expression '-' term
;

term : factor
j term '*' factor
j term '/' factor
;

factor : IDENTIFIER
j NUMBER
j '(' expression ')'
;

%% ||||||||||||||||||

�� User declarations
�� Empty in this case

Figure 5. Sample Calculator Grammar

7

4.2.1 Token Declarations Section

Ayacc requires tokens of the grammar to be explicitly declared in the token declarations
section. A token declaration consists of a %token keyword followed by a list of identi�ers
that may optionally be separated by commas. All token names must follow Ada enumer-
ation type naming conventions as the tokens are directly translated into an enumeration
type. An example of a tokens declaration is shown in Figure 6.

%token identifier , number

%token if_statement while_loop -- comma is optional

%token ',' ''' -- literals are allowed

Figure 6. Legal Ayacc Token Declarations
Ayacc also allows the user to place declarations in the tokens package by enclosing a
collection of Ada declarations in braces in the tokens declaration section.

4.2.2 Associating Ada Types with Grammar Symbols

Ayacc also provides a way to associate an Ada data type to nonterminals and tokens. The
data type is de�ned by associating an Ada type declaration to the identi�erYYSType. Once
this type is de�ned, actions can access the values associated with the grammar symbols.
This declaration must appear in the tokens declarations section or the Ayacc output will
fail to compile. For example, a declaration of the form

%token a b d e
f

subtype YYSType is Integer;

g
%%

allows the grammar symbols to have integer values that can be accessed and set by the
user-de�ned actions.

Since the types declared in the Tokens Declaration section may require the visibility of
types and operations de�ned in other packages, Ayacc provides a mechanism for specifying
a Context Clause for the generated tokens package. The keywords de�ned for this purpose
are%with and%use. Although these keywords are used with the same syntax as%token
keyword, they may only be used prior to the Ada declarations section. An example of their
usage is shown in Figure 7.

8

%token '=' '+' '-' '/' '*' NUMBER IDENTIFIER

%with Binary Operator Manager �� These MUST precede the Ada
%use Binary Operator Manager �� declarations section.

f
type YYSType is

record
Operation : Binary Operator Manager.Operator Expression Type;
Precedence : Binary Operator Manager.Precedence Type;

end record;
g
%%
�� The Tokens package generated by Ayacc is shown below:

with Binary Operator Manager;
use Binary Operator Manager;
package Test Tokens is

type YYSType is
record

Operation : Binary Operator Manager.Operator Expression Type;
Precedence : Binary Operator Manager.Precedence Type;

end record;

YYLVal, YYVal : YYSType;
type Token is (End Of Input, Error,

'=', '+', '-', '/', '*', Number, Identi�er);

Syntax Error : exception;

end Test Tokens;

Figure 7. Specifying a Context Clause for the Tokens Package

9

4.2.3 Rules Section

The rules de�ne the grammar to be parsed. Each rule consists of a nonterminal symbol
followed by a colon and a list of grammar symbols terminated by a semicolon. For example,
a rule corresponding to a street address could be represented as:

Address : Street City ',' State Zip ;
Street, City, State, and Zip must be either nonterminal or token symbols that are

de�ned elsewhere within the speci�cation �le. Characters enclosed in single quotes, such
as the comma in the example above, are tokens that appear as character literals in the
input. Unlike other tokens, character literals do not have to be explicitly declared in the
declarations section. Unlike Yacc, Ayacc does not allow escape characters to be entered
as literals.

For convenience, the vertical bar may be used to factor rules with identical left hand
sides. When using the vertical bar notation, the semicolon is used only at the end of the
last rule. For example,

A : B C D ;

A : E F;

A : G ;

can be abbreviated as

A : B C D

| E F

| G

;

Nonterminal names consist of a sequence of alphanumeric characters as well as periods and
underscores. Ada reserved words may be used as nonterminal identi�ers. Some examples
are shown in Figure 8.

pragma
..parameter list..

system

.

Figure 8. Typical Nonterminals
Unlike token symbols, nonterminals are not explicitly declared; they are implicitly de�ned
by appearing on the left hand side of a rule. However, one nonterminal, the start symbol,
has such signi�cance that a provision exists for explicitly declaring it. The start symbol
is the most general structure described by the grammar and it may be declared in the
declarations section by preceding it with the %start keyword. In the absence of a %start
construct, Ayacc uses the left hand side of the �rst grammar rule as the start symbol.

10

Unlike Yacc identi�ers, all token and nonterminal names are case insensitive. Thus,
ABC and aBc denote the same grammar symbol in an Ayacc speci�cation �le.

4.2.4 Actions

It is often necessary for the parser to take some action when certain syntactic structures are
recognized. For example, it may be necessary to generate code as an arithmetic expression
is parsed or to update a symbol table as keywords appear in the input. Ayacc allows each
grammar rule to have associated actions which are executed whenever the rule is recognized
by the parser. An action consists of a sequence of Ada statements enclosed in braces and
placed after the body of a rule. Some examples follow:

N : x y z

{ count := count + 1; } -- Counts the occurrences of N

;

A : B C D

{ Put_Line("hello"); } -- Prints Hello whenever A is parsed

;

The user may need to provide declarations of types and variables used in actions. These
declarations can be provided in separate packages used by YYParse or they may be provided
within the user declarations section at the end of the speci�cation �le.

Ayacc uses a pseudo-variable notation to denote the values associated with nonterminal
and token symbols. The left hand side of a rule may be set to a speci�c value by an
assignment to the variable $$. For example, if YYSType is an integer, the action:

A : B C D f $$:= 1; g

sets the value of A to 1. To use the values of symbols on the right hand side of the rule,
the action may use the pseudo-variables 1::n, where n refers to the nth element of the right
hand side of the rule. For example,

A : B '+' C f $$:= $1 + $3; g

sets A to the sum of the values of B and C.

11

Sometimes it is necessary to execute actions before a rule is fully parsed. Ayacc permits
actions to appear in the middle of a rule as well at the end. These nested actions are assumed
to return a value accessible through the usual $$ notation. A nested action may access
values returned by symbols to its left. For example,

A : B

{ $$:= $1 + 1; } -- The reference to $$ refers to the value

-- of the the action not the value of A

C

{ x := $2; } -- The reference to $2 is the value of the

-- previous action. A reference to $$ here

-- would refer to the value of A.

;

has the e�ect of setting x to the value of B plus 1. Nested actions cause Ayacc to manu-
facture a new rule that matches the empty string. For example, the rule

A : B { $$:= 1; } C ;

is treated as if it were written

$act : { $$:= 1; }

A : B $act C;3

4.2.5 User Declarations

By default, Ayacc generates a parameterless procedure, YYParse, that must with the to-
kens package and will call the user supplied routines, YYLex and YYError. If the user
desires, the procedure may be incorporated within a package by providing a package dec-
laration in the last section of the speci�cation �le. The package declaration is identical to
that of an Ada package declaration with the key marker, ##, substituted where the body
of YYParse is to be inserted. See Figure 9 for an example.

The user is responsible for providing the with and use clauses for the Tokens, Parse Ta-
ble, and Text IO packages used by the parser. An example of the user declarations section is
shown in Figure 9. The �lename associated with this speci�cation is example parser.y.

3Note: The `$' in $act is used to prevent collision with other nonterminals and is not permitted in a
legal nonterminal name.

12

��Token Declarations and Rules Section would be up here.
%%

package Example Parser is
procedure YYParse;
Syntax Error : exception;

end Example Parser;

with Example Parser Tokens,
Example Parser Shift Reduce,
Example Parser Goto,
Text IO;

use Example Parser Tokens,
Example Parser Shift Reduce,
Example Parser Goto,
Text IO;

package body Example Parser is

function YYLex return Token is
begin
. . .

end YYLex;

procedure YYError(S : in string) is
begin
Put Line(S);
raise Syntax Error;

end YYError;

��Miscellaneous declarations and subprograms
. . .

��YYParse will be inserted here.

end Example Parser;

Figure 9. Sample User Declarations Section

13

4.2.6 User Supplied Routines

The user must provide a lexical analyzer to read the input and to send the appropriate
tokens along with their values to the parser generated by Ayacc. The lexical analyzer
must be declared as an Ada function YYLex that returns an enumeration type value cor-
responding to a token in the grammar. The enumeration type is declared in the tokens
package generated by Ayacc for use by the lexical analyzer.

For example, given the input

%token a b

{

subtype YYSType is Integer;

}

%%

S : a ',' b;

%%

Ayacc will generate a �le, base tokens.ada, containing the following package declara-
tion:

package Base Tokens is

subtype YYSType is Integer;

YYLVal,YYVal : YYSType;

type Token is (Error, End of Input, A, B, ',');

Syntax Error : exception;

end Base Tokens;

14

The user's corresponding lexical analyzer might look like:

with Text IO, Tokens;
use Text IO, Tokens;
function YYLex return Token is

Char : Character;
begin

if End of File then
return End of Input;

end if;

loop
Get(Char);
case Char is

when 'A' j 'a' =>
YYLVal := 1;
return a;

when 'B' j 'b' =>
YYLVal := 2;
return b;

when ',' =>
YYLVal := 0;
return ',';

when others =>
return Error;

end case;
end loop;

end YYLex;

The tokens Error and End of Input are special prede�ned tokens that should not be
declared by the user. The End of Input token should be returned by the lexical analyzer
after all the lexical input has been read. The Error token is used for error recovery and is
discussed later. If tokens have values associated with them, the lexical analyzer may return
these values by assigning them to the variable, YYLVal. In the example above, token `A'
will have a value of 1 and token `B' will have a value of 2. YYVal may be used to access the
current value associated with the last symbol recognized by the parser. For example, at
the end of the parse YYVal contains the value associated with the start symbol. Although
the user can assign values to YYVal, it is not recommended since it will overwrite
assignments made by previous actions.

15

In addition to the lexical analyzer, the user must provide an error reporting procedure,
YYError, that takes a string, corresponding to an error message, as an argument. YYError
is automatically called by the parser when it detects a syntax error.

4.3 Advanced Topics

4.3.1 Ambiguity and Con
icts

A grammar is ambiguous if the parser can reach a con�guration where it has a choice
between a shift or one or more reduce actions or a choice among several reduce actions.
There is never a shift/shift con
ict. Ayacc detects and reports ambiguous grammars and
provides two default rules for resolving ambiguity:

1. In a shift/reduce con
ict, the shift is chosen.

2. In a reduce/reduce con
ict, the reduce involving the earlier rule is chosen.

The verbose �le reports ambiguities in the grammar and shows how they have been
resolved. For example, consider the infamous dangling else grammar:

16

%token IF_TOKEN COND THEN_TOKEN ELSE_TOKEN ID

%%

stat : ID

| if_statement

;

if_statement : IF_TOKEN COND THEN_TOKEN stat

| IF_TOKEN COND THEN_TOKEN stat ELSE_TOKEN stat

;

%%

The grammar causes a shift/reduce con
ict reported in state 8 of the verbose �le

State 8

Kernel

(3) IF_STATEMENT : IF_TOKEN COND THEN_TOKEN STAT _

(4) IF_STATEMENT : IF_TOKEN COND THEN_TOKEN STAT _

ELSE_TOKEN STAT

Closure

(3) IF_STATEMENT : IF_TOKEN COND THEN_TOKEN STAT _

(4) IF_STATEMENT : IF_TOKEN COND THEN_TOKEN STAT _

ELSE_TOKEN STAT

*** Conflict on input ELSE_TOKEN

Reduce 3 or Shift 9

ELSE_TOKEN shift 9

default reduce 4

The verbose entry states that if the parser sees an ELSE TOKEN in state 8, it has
a choice between shifting the token and entering state 9 or reducing by rule 3. In other
words, an expression of the form:

if cond1 then if cond2 then statement else statement

can be parsed as,

17

if cond1 then statement else statement

or as,

if cond1 then statement

The default action taken by Ayacc is to shift the ELSE TOKEN; this has the e�ect of
matching an else with the nearest if token.

4.3.2 Precedence and Associativity

Rewriting a grammar to eliminate ambiguities will often result in an unnatural looking
grammar and a less e�cient parser. For example, consider the original calculator grammar
:

expression : term

| expression '+' term

| expression '-' term

;

term : factor

| term '*' factor

| term '/' factor

;

factor : IDENTIFIER

| NUMBER

| '(' expression ')'

;

In the above grammar, the productions:

expression : expression '+' term

| expression '-' term

exist only to enforce the precedence of multiplicative operators over additive operators. For
example, the input:

18

a * b + c

is parsed as,

Factor * b + c

Term * b + c

Term * Factor + c

Term + c

Expression + c

Expression + Factor

Expression + Term

Expression

Similarly,

a + b * c

is parsed as,

a + b * c

Factor + b * c

Term + b * c

Expression + b * c

Expression + Term * c

Expression + Term * Factor

Expression + Term

Expression

Ideally we would prefer to represent the grammar using the more natural but ambiguous
speci�cation:

expression : expression '+' expression

| expression '-' expression

| expression '*' expression

| expression '/' expression

| '(' expression ')'

| IDENTIFIER

| NUMBER

;

Note that the grammar above also contains fewer productions and may result in a faster
parser. However, the grammar is ambiguous because inputs of the form

19

a op1 b op2 c

can be parsed as,

(a op1 b) op2 c

or as,

a op1 (b op2 c).

Moreover, the default resolution scheme used byAyacc will result in an incorrect parser.
Fortunately, Ayacc provides a scheme to allow the user to assign precedence and asso-

ciativity to tokens and productions when the default disambiguating rules are inadequate.
The notion of precedence and associativity is particularly useful for grammars involving
arithmetic expressions as in the example above. For example, the shift-reduce con
icts
shown below:

(1) EXPRESSION : EXPRESSION _ '+' EXPRESSION

(3) EXPRESSION : EXPRESSION '*' EXPRESSION _

*** Conflict on input '+'

Reduce 3 or Shift 6

(1) EXPRESSION : EXPRESSION '+' EXPRESSION _

(3) EXPRESSION : EXPRESSION _ '*' EXPRESSION

*** Conflict on input '*'

Reduce 1 or Shift 8

can be resolved by giving priority to the action involving the token with the highest prece-
dence. Since '*' has higher precedence than '+', the �rst con
ict will be resolved in favor
of a reduce and the second in favor of a shift.

In addition, shift-reduce con
icts also exist for

20

(1) EXPRESSION : EXPRESSION _ '+' EXPRESSION

(1) EXPRESSION : EXPRESSION '+' EXPRESSION _

*** Conflict on input '+'

Reduce 1 or Shift 6

(3) EXPRESSION : EXPRESSION _ '*' EXPRESSION

(3) EXPRESSION : EXPRESSION '*' EXPRESSION _

*** Conflict on input '*'

Reduce 3 or Shift 8

In these cases, precedence is of no help since the con
icts involve the same tokens.
However, con
icts involving tokens with the same precedence may be resolved using as-
sociativity rules. Left associative operators imply a reduce. Conversely, right associative
operators imply a shift. In the above example, both '*' and '+' are left associative, and
therefore the con
icts should be resolved in favor of the reduce action.

Precedence and associativity is assigned to tokens in the declarations section using the
keywords, %left, %right, and %nonassoc, followed by a list of tokens. %nonassoc denotes
nonassociative tokens such as the Ada relational operators. Precedence declarations are
listed in order of increasing precedence with tokens on the same line having identical prece-
dence and associativity. For example, an Ayacc speci�cation of an arithmetic expression
grammar might look like:

21

%token number -- No prec/assoc

%right '='

%left '+' '-'

%left '*' '/'

%left DUMMY -- This token is not used by

-- the lexical analyzer

exp : exp '=' exp

| exp '+' exp

| exp '-' exp

| exp '*' exp

| exp '/' exp

| '-' exp %prec dummy -- changes the default precedence of

-- this rule to that of token dummy;

| NUMBER

;

%%

The precedence and associativity rules used by Ayacc to resolve con
icts are summa-
rized below :

1. A grammar rule inherits the precedence and associativity of the last token or literal
in its body.

2. If either the grammar rule or the token has no precedence and associativity, Ayacc
uses its default scheme for resolving con
icts. Reduce/reduce con
icts are always
resolved according to the rule that appears �rst in the speci�cation �le.

3. If there is a shift/reduce con
ict and the rule and token have precedence associ-
ated with them, the con
ict is resolved in favor of the rule/token with the highest
precedence. If the precedences are equal, left associativity implies a reduce, right
associativity implies a shift, and nonassociativity implies an error.

4. The precedence of a grammar rule may be explicitly set by the keyword %prec and
a trailing token that speci�es that the rule inherits the precedence of the token. The
example above uses a dummy token to give unary minus the highest precedence for
arithmetic operators.

4.3.3 Error Recovery

By default, the Ayacc generated parser calls YYError and aborts as soon as a syntax
error is encountered. Although this behavior is adequate for some applications, it is often
useful for the parser to continue parsing so that further syntax errors can be detected. To

22

accomplish this, Ayacc provides a simple method to indicate where error recovery should
be attempted. The parser makes no attempt to repair incorrect input. Instead, it attempts
to reduce the phrase containing the syntax error to a user speci�ed nonterminal. After the
reduction, parsing resumes as usual.

4.3.4 Error Productions

Certain user-speci�ed nonterminals form the basis of error recovery. These nonterminals
are speci�ed by adding rules to the grammar of the form

A : � error �

Where � and � are possibly empty strings of terminals and nonterminals. The token
Error is prede�ned and should not be used for any other purposes. As with other rules, an
action may be associated with any error production.

4.3.5 The Error Recovery Algorithm

When a syntax error is detected, the parser calls procedure YYError with the message
Syntax Error and then attempts to recover. The error recovery process can be broken
down into three steps.

1. The parser pops the stack zero or more times, until it �nds the top most state where
a shift on error is legal. This state will be associated with some item of the form

A : � error �

If the stack contains no such state, the parser raises the exception Syntax Error after
popping the entire stack.

2. Next, the parser executes a shift on Error pushing the state associated with the item

A : � error �

onto the stack.

3. The parser then attempts to resume parsing with the current lookahead token set to
the token that caused the error. All new tokens that would cause an error are quietly
discarded until one token is shifted. If the parser discards the End of Input token
it will raise a Syntax Error exception; otherwise, parsing resumes normally after the
�rst token is shifted.

If a new syntax error is detected before three valid shifts, error recovery is reinitiated
without reporting a syntax error. This prevents an avalanche of error messages caused by
incomplete error recovery.

23

4.3.6 An Example of Error Recovery

A rule designed to recover from syntax errors in Ada statements might have the form:
statement : error ;

This identi�es statement as a location where errors are expected and will cause the
parser to attempt to skip over statements containing syntax errors.

Now suppose that the parser was parsing the following statement:
i := 5 + +j � f(1) + 1;

When the parser detects the syntax error, it will have already pushed a sequence of
states on top of the stack corresponding to the input up to the second plus sign. These
states would be popped one at a time until a state that had an action shift on Error was
encountered. Since a statement was being parsed, this state would be associated with the
item:

statement : error
The parser will now perform a shift on input Error and enter a state associated with

the item:
statement : error

The remaining input would be:
+ j - f(1) + 1;

Now the parser would attempt to resume parsing, discarding any tokens that would
cause an error, until a shift action is executed. Since the parser will reduce the Error
token to a statement, the only token that would allow a shift to occur would be one that
could follow a statement. The plus sign would be discarded because it could not follow
a statement, but because identi�er j could follow a statement, the parser would shift the
identi�er j and resume parsing as if j was at the start of a new statement. The minus sign
would cause a new error since no statement can begin with:

j -
Although error recovery will occur again, a new syntax error would not be reported

because three tokens have not been successfully shifted. After popping the stack and
shifting the Error token, the parser would again enter the state associated with:

statement : error
and the remaining input would be:

- f(1) + 1;
The parser would discard tokens again until it found one that could follow a statement.

Parsing would resume with the identi�er f , since f could be the start of a new statement.
The parser would shift f, the left parenthesis, the integer, and the right parenthesis. When
it reads the plus sign it would think it encountered a new syntax error. This time it would
report a syntax error since three tokens have been successfully shifted. After the states are
popped and the Error token has been shifted the parser would continue discarding tokens
up to and including the semicolon. If the input following the semicolon is a legal statement,
parsing would resume normally.

24

4.3.7 More Control over Error Recovery

In the previous example we saw how the error recovery scheme might cause the parser
to incorrectly resume parsing while it was still in the phrase that caused the error. It is
possible to exert more control over error recovery by placing tokens after the Error token.
For example, if a syntax error was detected while parsing a statement, the production:

statement : error ';'
would cause the parser to discard tokens until a semicolon is read because after sim-

ulating the shift on the Error token, the parser would enter a state associated with the
item:

statement : error ';'
Since the only legal action is shift on semicolon, all tokens would be discarded until a

semicolon was encountered. This would prevent the false starts of the previous example.
Another way of obtaining more control over error recovery is to place tokens before the

Error token. Consider the following rules taken from an Ada grammar.

loop_statement : ..iteration_scheme..

LOOP_TOKEN

sequence_of_statements

END_TOKEN

';'

;

..iteration_scheme.. : -- empty

| FOR_TOKEN loop_param_spec

| WHILE_TOKEN condition

| FOR_TOKEN error

| WHILE_TOKEN error

;

Here, ..iteration scheme.. would not be reduced if an error was detected unless either a
FOR TOKEN or aWHILE TOKEN was seen on the input. Given the following production:

..iteration scheme.. : error ;
it is possible that error could be reduced to ..iteration scheme.. even though a syntax
error was detected when the parser was in a state where it could expect a string derived
from ..iteration scheme... If this happened, error recovery would discard tokens until a
LOOP TOKEN (the only token that can follow an ..iteration scheme..), was encountered.
This is clearly unacceptable if the next string was really a statement.

Sometimes it is useful for the parser to report errors before correctly shifting three
tokens. The procedure YYErrOK will force the parser to believe it has fully recovered from
any syntax error causing it to report errors in the following vthree tokens. For example,
an interactive application might have the rules

25

lists : lists list END_OF_LINE

{

-- print the value of $1

}

| list END_OF_LINE

{

-- print the value of $1

}

| error END_OF_LINE

{

YYErrOK;

Put_Line("Reenter previous line");

}

;

The call to YYErrOK will tell the parser it has correctly shifted three tokens causing
the next syntax error to be reported. If the call to YYErrOK was not in the action, a
syntax error in the next three tokens would not be reported.

The user could provide an action in an error production that decides what tokens to
discard. Here, the old lookahead token must be cleared. To accomplish this, the parser
provides the procedure YYClearIn which will force the parser to read the next token.

4.3.8 Automatic Error Recovery

See Appendix C for information on how to generate parsers that will attempt to automat-
ically recover from syntax errors.

5 Error Messages

This section describes the error messages which may be displayed by
Ayacc . The error messages are divided into three categories: Internal, Fatal, and Non
Fatal. The error message text is presented in Bold type with variable items in Italics.

26

5.1 Internal Error Messages

The following error message will always be displayed when an error is detected within the
tool, and may be preceded by additional descriptive messages.

1. Unexpected Error, Terminating...

5.2 Fatal Error Messages

The following error messages are produced when a fatal error condition is detected which
can be resolved by the tool user. Where appropriate, the error message will be followed by
the associated �le speci�cation, and the context and column location of the error.

1. Can't Open Source Filename.

2. Too Many Parameters.

An excessive number of parameters were speci�ed on the command line.

5.3 Non Fatal Error Messages

The following error messages display conditions which may be of interest to the tool user.
However, the displayed condition will not cause the tool to terminate execution. Where
appropriate, the error message will be followed by the associated �le speci�cation, and the
context and column location of the error.

1. Attempt to De�ne Terminal as Start Symbol.

2. Attempt to Rede�ne Precedence.

3. Context Clause Speci�cations May Not Appear After Ada Declarations.

4. Expecting a Colon after the Lefthand Side of the Rule.

5. Expecting Identi�er.

6. Expecting Next Section.

7. Expecting Package Name.

8. Expecting a Semicolon.

9. Expecting a Terminal after %prec.

10. Expecting Token Declaration.

11. Illegal Context Clause Speci�cation.

12. Illegal Filename.

27

13. Illegal Symbol Following $.

14. Illegal Symbol as Token.

15. Illegal Token.

16. Illegal Token Following %prec.

17. Illegal use of $Integer.

18. Integer Shift/Reduce Con
icts. In a shift/reduce con
ict, the shift is chosen.

19. Integer Reduce/Reduce Con
icts. In a reduce/reduce con
ict, the reduce involv-
ing the earlier rule is chosen.

20. Nonterminal Symbol Name Does Not Appear on the Left Hand Side of Any
Rule.

21. Nonterminal Symbol Name Does Not Derive a Terminal String.

22. %prec Cannot be Preceded by an Action.

23. Syntax Error detected in File Spec.

24. The Start Symbol has been De�ned Already.

25. Terminals Cannot be on the Lefthand Side of a Rule.

26. Terminal Following %prec has no Precedence.

27. Unexpected End of File before First '%%'. The Ayacc input speci�cation
should consist of three (four if Error Recovery is used) parts delimited by %%.

28. Unexpected Symbol.

29. Use Verbose Option.

6 Known De�ciencies

Ayacc has no known de�ciencies.

28

7 Release Notes

Ayacc was designed and developed by David Taback and Deepak Tolani at UC Irvine in
support of the Arcadia Research Project.

Enhancements made by Ronald J. Schmalz are summarized below.

1. Addition of%with and %use directives which permits automatic insertion of a context
clause information on the generated token package.

2. Unique unit name generation; the units created by Ayacc are now created as a
function of the input �le speci�cation. This allows the user to have multiple Ayacc
generated parsers within the same library.

Yidong Chen of the Arcadia Project at the University of Massachusetts in Amherst
added the advanced automatic error recovery described in appendix C.

29

A A Detailed Example

Below is a full Ayacc speci�cation for an integer desk calculator and a Lex speci�cation of
the corresponding lexical analyzer. The Ayacc speci�cation �le is named calculator.y. The
calculator has 26 variables labeled `A' through `Z' and supports most of the Ada integer
arithmetic operators. The example illustrates most of the advanced features of Ayacc
including precedence, associativity, error recovery, and interfacing to Lex.

�� The Ayacc speci�cation �le ��

%token '(' ')' NUMBER IDENTIFIER NEW LINE

%right '='
%left '+' '-'
%left '*' '/'
%right DUMMY
%nonassoc EXP

f

type key type is (Cval, Ival, Empty);

type YYSType (Key : Key Type := Empty) is
record

case Key is
when Cval =>

Register : Character;
when Ival =>

Value : Integer;
when Empty =>

null;
end case;

end record;
g

%%

statements : statements statement
j
;

statement : expr NEW LINE
f Put Line(Integer'Image($1.value)); g

30

j error NEW LINE
f Put Line("Try again");
YYErrOK;
g

statement
;

expr : IDENTIFIER '=' expr
f registers($1.register) := $3.value;
$$:= (key => ival, value => $3.value); g

j expr '+' expr
f $$:= (key => ival, value => $1.value + $3.value); g

j expr '-' expr
f $$:= (key => ival, value => $1.value - $3.value); g

j expr '*' expr
f $$:= (key => ival, value => $1.value * $3.value); g

j expr '/' expr
f $$:= (key => ival, value => $1.value / $3.value); g

j expr EXP expr
f $$:= (key => ival,
value => Integer(
oat($1.value) ** $3.value)); g

j '-' expr %prec DUMMY
f $$:= (key => ival, value => - $2.value); g

j '(' expr ')'
f $$:= (key => ival, value => $2.value); g

j NUMBER
f $$:= (key => ival, value => $1.value) ; g

j IDENTIFIER
f $$:= (key => ival, value => registers($1.register)); g

;

%%

package Calculator is
procedure YYParse;

end Calculator;

with Calculator Tokens,
Calculator Shift Reduce,
Calculator Goto,
Text IO;

use Calculator Tokens,
Calculator Shift Reduce,

31

Calculator Goto,
Text IO;

package body Calculator is

Registers : array('A'..'Z') of Integer;

procedure YYError(Text : in String) is
begin

Put Line(Text);
end;

##

end Calculator;

32

/* The Lex specification file */

%{

#include "calculator.h"

static char reg;

static int value;

%}

%%

[A-Z] { reg = yytext[0]; return IDENTIFIER; }

[a-z] { reg = yytext[0] - 'a' + 'A'; return IDENTIFIER; }

[0-9]+ { value = atoi(yytext); return NUMBER; }

"**" { return EXP; }

[()+/*=-] { return yytext[0]; }

\n { return NEW_LINE; }

[\t]+ {}

%%

yywrap()

{

return 1;

}

get_token()

{

return yylex();

}

get_register()

{

return reg;

}

get_value()

{

return value;

}

33

��A modi�ed version of the C Lex package ��

with Calculator Tokens; use Calculator Tokens;
package Calculator C Lex is

function YYLex return Token;
end Calculator C Lex;

package body Calculator C Lex is

function GET TOKEN return Integer;

pragma INTERFACE(C, GET TOKEN);

��These four declarations have been added

function get register return Character;
function get value return Integer;
pragma interface(c, get register);
pragma interface(c, get value);

type Table is array(0..255) of token;

Literals : constant Table := Table'(0 => END OF INPUT,
40 => '(',
41 => ')',
61 => '=',
43 => '+',
45 => '-',
42 => '*',
47 => '/',
others => ERROR);

��Continued on next page ...

34

function YYLex return TOKEN is
X : Integer;

begin
X := GET TOKEN;
if X > 255 then

��This case statement has been added to assign appropriate
��values to YYLVal.
case TOKEN'VAL(X-256) is

when number =>
YYLVal := (key => ival, value => get value);

when identi�er =>
YYLVal := (key => cval, register => get register);

when others => null;
end case;

return TOKEN'VAL(X-256);
else

return LITERALS(X);
end if;

end YYLex;
end Calculator C Lex;

35

B Using the Verbose and Debug Options

We will introduce the concept of an item to describe the output �le created by the Verbose
option. An item consists of a rule with an underscore at some position on the right side.
The underscore denotes the amount of input seen by the parser. For example, an item of
the form

X : A B _ C

shows that the parser is examining input corresponding to the rule X : A B C. The un-
derscore states that the parser has has already seen A B and is expecting input that will
match C.

Items provide a means of �nitely representing the possible legal inputs to the parser.
Each state contains a set of items corresponding to con�gurations indistinguishable to the
parser. For technical reasons, the set of items associated with a state fall into two categories
termed the kernel and closure. Users familiar with LR parsers may be interested in both
the kernel and closure items, however the typical user need only be concerned with items
in the closure.

The verbose �le contains a list of the states along with their corresponding item sets
and parse actions. A sample verbose �le for the simple grammar,

%token id

%%

E : E '+' T

| T

;

T : T '*' id

| id

;

is shown below.

36

State 0

Kernel

(0) $accept : _ E END_OF_INPUT

Closure

(0) $accept : _ E END_OF_INPUT

(1) E : _ E '+' T

(2) E : _ T

(3) T : _ T '*' ID

(4) T : _ ID

T goto 2

E goto 1

ID shift 3

default error

State 1

Kernel

(0) $accept : E _ END_OF_INPUT

(1) E : E _ '+' T

Closure

(0) $accept : E _ END_OF_INPUT

(1) E : E _ '+' T

END_OF_INPUT accept

'+' shift 5

default error

37

State 2

Kernel

(2) E : T _

(3) T : T _ '*' ID

Closure

(2) E : T _

(3) T : T _ '*' ID

'*' shift 6

default reduce 2

State 3

Kernel

(4) T : ID _

Closure

(4) T : ID _

default reduce 4

State 4

Kernel

(0) $accept : E END_OF_INPUT _

Closure

(0) $accept : E END_OF_INPUT _

default error

38

State 5

Kernel

(1) E : E '+' _ T

Closure

(1) E : E '+' _ T

(3) T : _ T '*' ID

(4) T : _ ID

T goto 7

ID shift 3

default error

State 6

Kernel

(3) T : T '*' _ ID

Closure

(3) T : T '*' _ ID

ID shift 8

default error

39

State 7

Kernel

(1) E : E '+' T _

(3) T : T _ '*' ID

Closure

(1) E : E '+' T _

(3) T : T _ '*' ID

'*' shift 6

default reduce 1

State 8

Kernel

(3) T : T '*' ID _

Closure

(3) T : T '*' ID _

default reduce 3

Using the verbose �le it is possible to trace how the parser will process a string of
tokens. For example the string `ID * ID + ID' would be treated as follows:

State Stack Input

0 ID * ID + ID END_OF_INPUT

The verbose entry for state 0 shows that on a lookahead token of ID the action is a shift
and the new state is 3. Thus, the new con�guration of the parser becomes

State Stack Input

3

0 * ID + ID END_OF_INPUT

For state 3, there is no explicit action associated with the lookahead token and therefore
the default action is consulted. The default action associated with state 3 is a reduction

40

by rule 4) T : ID. Recall that a reduction consists of two steps. First state 3 is popped
leaving state 0 on top of the stack. Next the parser determines a new state by consulting
the current top of the stack and the right hand side of the rule. This new state is signi�ed
by a goto entry in the current state. The verbose entry for state 0 and symbol T is a goto
to state 2 producing the new con�guration:

State Stack Input

2

0 * ID + ID END_OF_INPUT

The remaining con�gurations in the parse are shown below:

Shift 6

State Stack Input

6

2

0 ID + ID END_OF_INPUT

Shift 8

State Stack Input

8

6

2

0 + ID END_OF_INPUT

Default Reduce 3) T : T '*' ID

Pop 8 6 2

Goto state 2

State Stack Input

2

0 + ID END_OF_INPUT

Default Reduce 2) E : T

Pop 2

Goto state 1

State Stack Input

1

0 + ID END_OF_INPUT

41

Shift 5

State Stack Input

5

1

0 ID END_OF_INPUT

Shift 3

State Stack Input

3

5

1

0 END_OF_INPUT

Default reduce 4) T : ID

Pop 3

Goto 7

State Stack Input

7

5

1

0 END_OF_INPUT

Default reduce 1) E : E + T

Pop 7 3 5

Goto 1

State Stack Input

1

0 END_OF_INPUT

Accept END_OF_INPUT

Parse completes successfully

42

C Automatic Error Recovery

If the Error Recovery command line parameter is set to On then Ayacc will generate an
extension for automated syntax error correction. Note that the lexical analyzer must con-
tain additional functions which give the line number and column for each token. This
can be done by giving the -E option to A
ex. Ayacc generates an additional �le named
base error report.a and the user may specify another optional section in the user speci�ca-
tion �le. Here is a description of that section.

C.1 User Error-correction Messages section

This is a section for the user to supply routines if he/she wishes to control the reporting
of correction messages. Ayacc-extension supports automatic correction of some syntactic
errors, as explained later. Along with each correction, a message is printed. In addition to
the default message printed, the user is able to report a message of his/her own. Here is
the spec of the message-reporting procedure which is generated:

procedure Report_Continuable_Error(Line_Number : in Natural;

Offset : in Natural;

Finish : in Natural;

Message : in String;

Error : in Boolean);

Line Number is the line at which the error occurred; O�set is the index into the line of
the start of the error; Finish is the index into the line of the end of the error; Message is
a string describing the error. Error is true for all genuine syntax errors, when it is false it
indicates a syntax warning.

This section resembles the Token and Stack Element section syntactically in that its
entries begin with the '%' character. There are the options available in this section:

1. %with;
Generates a line 'With;' in the error report �le (package body)

2. %use;
Generates a line 'Use;' in the error report �le (package body)

3. %initialize error report
Following this line there should be the body of a no-argument procedure which will
be called once at the beginning of yyparse. It can be used to initialize any data
structures used by the user's error report.

43

4. %terminate error report
Following this line there should be the body of a no-argument procedure which will
be called once at the end of yyparse. It can be used to close any data ports utilized
by the user's error reporting mechanism.

5. %report error
Following this line there should be the body of the procedure Report Continuable Error
described above (i.e. with those arguments).

The %with and %use lines, if present, should precede the others. An example is shown
below.

-- The other declarations would go up here.

%%

%with text_io;

%initialize_error_report

begin

text_io.put_line("Initializing Error Report...");

end;

%terminate_error_report

begin

text_io.put_line("Finishing Error Report...");

end;

%report_error

begin

text_io.put_line("Error at line" & natural'image(line_number)

& ": " & message);

end;

C.2 Change in running the Parser

If Error Recovery is set to On, the generated parser has more power in error recovery. Here
is the additional power:

C.2.1 Output

A run of YYParse will produce a listing �le which records the parsed lines of the input
text and indicates where errors occurred. If the speci�cation �le is named base.y, then the
listing �le will be named base.lis. The rest of the output of the program is dependent on

44

the action routines; as arbitrary code these are free to perform output operations.

C.2.2 Error Recovery

When the Ayacc generated parser encounters a syntax error, it tries to correct it. To correct
the error it will try either to insert a legal token before the error, to change the error to a
legal token, or to delete the error from the token stream. When a correction can be made,
a message is printed describing the correction. Even when it is possible to correct an error,
the correction will only be syntactic. For example, say the user is parsing a Pascal program
and the input is missing a semicolon at the end of a statement. The parser may be able to
detect that and insert the semicolon. In all likelihood, the semicolon has no semantic value,
and the grammar rule in which it appears would not reference it in its semantic action.
However, consider a case where the parser decides to insert an identi�er token in order to
correct a syntax error. It is very likely that an action routine for the grammar rule using
the identi�er would reference it semantically, to �nd out what characters are in the string
making up the identi�er. However, the parser has no way of knowing which identi�er would
be best to insert at the point of insertion, so it cannot provide this information. The action
routine would therefore probably make a mistake, since it relies on the semantic information
being present. If executing an action routine following a syntax error raises an exception,
YYParse handles the exception and stops performing the code in action routines for the
remainder of the parse. Even before action routines are stopped, any actions following a
syntax error should not be trusted. To emphasize the abortive nature of a run of YYParse
with syntax error, the parser raises the exception Syntax Error at the end of an input with
syntax errors, even if all have been corrected. Here is a sample listing �le from a two line
calculator program.

1 1 * 2 * 3 * 2 3

Error ^

token deleted

2 4 + 28 / 14 + 2

Ayacc.YYParse : 1 syntax error found.

In the listing �le, non-blank lines of text are listed with their line number at the left.
The last token of the �rst line is a syntactic error; evidently an in�x notation was speci�ed
in this grammar. Errors are indicated by a line that begins "Error" and then contains a

45

caret character ""̂ underneath the start of the erroneous token. YYParse can continue its
parse if it deletes this token from the token stream.

C.2.3 User Error Messages

As previously mentioned, in addition to the default messages produced during error recov-
ery, the user, in the last section of the speci�cation �le, can provide routines for reporting
error messages in his/her own way. Also, the user is given an interface to those routines
which he/she can use even when there is no syntactic error as de�ned by the grammar
rules. This is useful in cases where there is input which parses properly but which "really"
represents a syntax error in the input �le. For this the following package is provided:

package user_defined_errors is

procedure parser_error(Message : in String);

procedure parser_warning(Message : in String);

end user_defined_errors;

This package is automatically visible to code in the user's action routines. Calling
user de�ned errors.parser error will increase the count of total syntax errors and call the
procedure report continuable error, from the "User Error-correction Messages" section.
The Message argument to parser error becomes the Message argument to
report continuable error, and the Error argument to report continuable error is given the
value True. The rest of the arguments to report continuable error are taken from context.
User de�ned errors.parser warning is similar, except that the Error argument in the gener-
ated call to report continuable error is False. It also increments a counter of syntax warn-
ings rather than syntax errors. There is an exception Syntax Warning like Syntax Error
mentioned above which will be raised if during the parse there is no syntax errors but there
are warnings. Note that the procedures from package user de�ned errors can be called even
if the procedure report continuable error is not de�ned by the user; in that case there will
be no reporting of the Message, but the incrementing of the proper counter will still take
place.

46

D Di�erences between Yacc and Ayacc

Ayacc was modeled after Yacc and adheres to most of the conventions and features of
its C analogue. Most of the di�erences between the two programs are minor, but some
di�erences will make it di�cult to convert Yacc speci�cations into Ayacc counterparts.
Some of the most important di�erences are listed below:

1. Ayacc identi�ers are case insensitive.

2. Ayacc does not provide a feature analogous to the %union and %type constructs
of Yacc. At some sacri�ce of convenience, similar functionality may be obtained by
declaring YYSType as a variant record.

3. Ayacc requires the user to de�ne YYSType.

4. There are no default actions in Ayacc .

5. Ayacc does not support the old and discouraged features ofYacc. In particular, %bi-
nary and %term are not allowed, actions cannot be speci�ed using the =f delimiter
and all rules must end in a semicolon. In addition, Ayacc uses braces rather than,
%f and %g, to denote declarations that should be written to the tokens package.

6. In Ayacc the tokens are an enumeration type rather than integers.

7. Ayacc does not permit escape characters to be entered as literals.

8. Yacc generates a �le containing the parser and parse tables and another �le contain-
ing the macro de�nitions of the tokens declaration. Ayacc generates four separate
�les corresponding to the parser, the two parse tables, and the tokens package. In
addition, Ayacc can generate the parser as a procedure or as a package depending
on the user's speci�cation �le.

47

E Ayacc Speci�cation File Guidelines

The key to preparing e�cient and readable Ayacc speci�cation �les is to make each part of
the speci�cation distinguishable from the rest. This appendix is provided to give the new
Ayacc user suggestions on how to prepare speci�cation �les which are:

1. E�cient.

2. Easy to read.

3. Easy to modify.

Speci�cation File Format

1. Group grammar rules with a common left hand side together, and line up the right
hand sides with the `:', `j', and `;'. This enhances readability and makes adding new
rules or actions easier.

2. Use upper case for Tokens returned by the lexical analyzer and lower case for Non-
Terminals of the grammar. This makes the distinction between terminals and non-
terminals very clear.

3. Place grammar rules and their corresponding actions on separate lines. This enhances
readability and maintainability.

The rule fragment shown in Figure 10 de�nes the rules/actions for Ada identi�er lists
and is intended to exemplify the guidelines listed above.

48

identifier_list : IDENTIFIER

{

$$:= (Tag => Identifier_List,

List => Empty_List);

Insert (Item => $1,

Into => $$.List);

}

| identifier_list ',' IDENTIFIER

{

$$:= $1;

Insert (Item => $3,

Into => $$.List);

}

;

Figure 10. Identi�er List Grammar and Actions

49

F How the Parser Works

The parser generated by Ayacc belongs to the class of parsers technically known as
LALR(1). Although the use of Ayacc does not require extensive knowledge of LALR
grammars, an intuitive understanding of how the parser works will help the user to resolve
ambiguities in the grammar speci�cation and to write more e�cient parsers.

The parser generated by Ayacc can be seen as a �nite state machine with a stack of
states. The current state is always on the top of the stack; initially the stack contains state
0. At any given moment during the parse, the parser uses its current state and the value of
the next lookahead token (obtained by calling YYLex) to determine its next action. Based
on the current state and lookahead token, the parser performs one of four actions:

ACCEPT

The parser accepts the grammar, completing the parse.

ERROR

The parser detects a syntax error and calls YYError. If no error recovery
is speci�ed the parser aborts.

SHIFT

The parser uses the current state and the lookahead token to choose a new
state that is pushed onto the stack. The lookahead token is advanced
to the next token in the input.

REDUCE

Reduce actions occur when the parser recognizes the right hand side of a
rule. In a reduce action, the parser pops a state for every symbol on the
right hand side of the rule. The parser then uses the current state
uncovered by the succession of pops and the nonterminal on the left hand
side of the rule to choose a new state that is pushed onto the stack. The
lookahead token is una�ected by a reduce action.

50

G Porting Ayacc to Other Systems

Installing Ayacc
Ayacc was developed using the Verdix Ada compiler (version v04.06) running under

UNIX 4.2 BSD and enhanced using the Dec Ada Compiler (version 1.2-15) running under
VAX/VMS 4.3. If you are using a di�erent system, you may have to make a minor change
to the Ayacc source.

Current Ayacc development is done using the SunAda (version 1.1i) on Sun worksta-
tions. Ports done by users for many other compilers are included in the distribution.

Reading arguments from the command line
The Verdix compiler uses a library package U Env to provide C-like facilities for reading

arguments from the command line. If your machine uses a di�erent mechanism for passing
parameters to the program, you will have to modify the subunit
Command Line Interface.Read Command Line from the Command Line Interface pack-
age.

51

