
A
ex { An Ada Lexical Analyzer

Generator

Version 1.1

John Self

Arcadia Environment Research Project

Department of Information and Computer Science

University of California, Irvine

UCI-90-18 �

May 1990

�This work was supported in part by the National Science Foundation under grants

CCR{8704311 and CCR{8451421 with cooperation from the Defense Advanced Research

Projects Agency, and by the National Science Foundation under Award No. CCR-8521398.

1

Contents

1 Introduction 1

2 Command Line Options 2

3 A
ex Output 4

4 Regular Expressions 5
4.1 Prede�ned Variables & Routines : 8

5 A
ex Source Speci�cation 10
5.1 De�nitions Section : 10

5.1.1 Macros : 10
5.1.2 Start Conditions : 11

5.2 Rules Section : 12
5.3 User De�ned Section : 12

6 Ambiguous Source Rules 12

7 A
ex and Ayacc 13

8 Appendix A: A Detailed Example 14

9 Appendix B: A
ex Dependencies 18
9.1 Command Line Interface : 18

10 Appendix C: Di�erences between A
ex and Lex 19

11 Appendix D: Di�erences between A
ex and Alex 19

12 Appendix E: Known Bugs and Limitations 21

1 Introduction

A
ex is a lexical analyzer generating tool written in Ada designed for lexical process-
ing of character input streams. It is a successor to the Alex[NF88] tool from UCI.
A
ex is upwardly compatible with alex 1.0, but is signi�cantly faster at generat-
ing scanners, and produces smaller scanners for equivalent speci�cations. Internally
a
ex is patterned after the
ex tool from the GNU project. A
ex accepts high
level rules written in regular expressions for character string matching, and gener-
ates Ada source code comprising a lexical analyzer along with two auxiliary Ada
packages. The main �le includes a routine that partitions the input text stream
into strings matching the expressions. Associated with each rule is an action block
composed of program fragments. Whenever a rule is recognized in the input stream,
the corresponding program fragment is executed. This feature, combined with the
powerful string pattern matching capability, allows the user to implement a lexical
analyzer for any type of application e�ciently and quickly. For instance, a
ex can
be used alone for simple lexical analysis and statistics, or with ayacc [TT86] to gen-
erate a parser front-end. Ayacc is an Ada parser generator that accepts context-free
grammars.

A
ex is a successor to the Arcadia toolAlex[NF88] which was inspired by the popular
Unix operating system tool, lex [Les75],. Consequently, most of lex's features and
conventions are retained in a
ex; however, a few important di�erences are discussed
in section 10. There are also a few minor di�erences between a
ex and alex which
will be discussed in section 11.

This paper is intended to serve as both the reference manual and the user man-
ual for a
ex. Some knowledge of lex, while not required, would be very useful in
understanding the use ofa
ex. A good introduction to lex, as well as lexical and
syntactic analysis, can be found in [ASU86], frequently referred to as \the Dragon
Book." Topics to be covered in this paper include the usage of a
ex, the operators'
description, the source �le format, the generated output, the necessary interfaces
with ayacc, and ambiguity among rules. The appendices provide a simple exam-
ple, a
ex dependencies, the di�erences between a
ex,alex, and lex, known bugs and
limitations, and references.

1

2 Command Line Options

Command line options are given in a di�erent format than in the old UCI alex.
A
ex options are as follows

-t Write the scanner output to the standard output rather than to a �le. The
default name of the scanner �le for base.l is base.a Note that this option is not
as useful with a
ex because in addition to the scanner �le there are �les for
the externally visible dfa functions (base dfa.a) and the external IO functions
(base io.a)

-b Generate backtracking information to a
ex.backtrack. This is a list of scanner
states which require backtracking and the input characters on which they do
so. By adding rules one can remove backtracking states. If all backtracking
states are eliminated and -f is used, the generated scanner will run faster (see
the -p
ag). Only users who wish to squeeze every last cycle out of their
scanners need worry about this option.

-d makes the generated scanner run in debug mode. Whenever a pattern is recog-
nized the scanner will write to stderr a line of the form:

--accepting rule #n

Rules are numbered sequentially with the �rst one being 1. Rule #0 is ex-
ecuted when the scanner backtracks; Rule #(n+1) (where n is the number
of rules) indicates the default action; Rule #(n+2) indicates that the input
bu�er is empty and needs to be re�lled and then the scan restarted. Rules
beyond (n+2) are end-of-�le actions.

-f has the same e�ect as lex's -f
ag (do not compress the scanner tables); the
mnemonic changes from fast compilation to (take your pick) full table or fast
scanner. The actual compilation takes longer, since a
ex is I/O bound writing
out the big table. The compilation of the Ada �le containing the scanner is
also likely to take a long time because of the large arrays generated.

-i instructs a
ex to generate a case-insensitive scanner. The case of letters given
in the a
ex input patterns will be ignored, and the rules will be matched
regardless of case. The matched text given in yytext will have the preserved
case (i.e., it will not be folded).

2

-p generates a performance report to stderr. The report consists of comments
regarding features of the a
ex input �le which will cause a loss of performance
in the resulting scanner. Note that the use of the ^ operator and the -I
ag
entail minor performance penalties.

-s causes the default rule (that unmatched scanner input is echoed to stdout) to
be suppressed. If the scanner encounters input that does not match any of
its rules, it aborts with an error. This option is useful for �nding holes in a
scanner's rule set.

-v has the same meaning as for lex (print to stderr a summary of statistics of
the generated scanner). Many more statistics are printed, though, and the
summary spans several lines. Most of the statistics are meaningless to the
casual a
ex user, but the �rst line identi�es the version of a
ex, which is useful
for �guring out where you stand with respect to patches and new releases.

-E instructs a
ex to generate additional information about each token, including
line and column numbers. This is needed for the advanced automatic error
option correction in ayacc.

-I instructs a
ex to generate an interactive scanner. Normally, scanners generated
by a
ex always look ahead one character before deciding that a rule has been
matched. At the cost of some scanning overhead, a
ex will generate a scanner
which only looks ahead when needed. Such scanners are called interactive
because if you want to write a scanner for an interactive system such as a
command shell, you will probably want the user's input to be terminated with
a newline, and without -I the user will have to type a character in addition
to the newline in order to have the newline recognized. This leads to dreadful
interactive performance.

If all this seems to confusing, here's the general rule: if a human will be typing
in input to your scanner, use -I, otherwise don't; if you don't care about how
fast your scanners run and don't want to make any assumptions about the
input to your scanner, always use -I.

Note, -I cannot be used in conjunction with full i.e., the -f
ag.

-L instructs a
ex to not generate #line directives (see below).

-T makes a
ex run in trace mode. It will generate a lot of messages to stdout
concerning the form of the input and the resultant non-deterministic and de-
terministic �nite automatons. This option is mostly for use in maintaining
a
ex.

3

-Sskeleton �le overrides the default internal skeleton from which a
ex constructs
its scanners. You'll probably never need this option unless you are doing a
ex
maintenance or development.

3 A
ex Output

A
ex generates a �le containing a lexical analyzer function along with two auxiliary
packages, all of which are written in Ada. The context in which the lexical analyzer
function is de�ned is
exible and may be speci�ed by the user. For instance, the �le
may only contain the lexical analyzer function as a single compilation unit which may
be called by ayacc, or it may be placed within a package body or embedded within a
driver routine. This scanner function, when invoked, partitions the character stream
into tokens as speci�ed by the regular expressions de�ned in the rules section of the
source �le. The name of the lexical analyzer function is yylex. Note that it returns
values of type token. Type token must be de�ned as an enumeration type which
contains, at a minimum, (End of Input, Error). It is up to the user to make sure
that this type is visible (see Section 7). The general format of the output �le which
contains this function is found in Figure 3.

The auxiliary packages include a DFA and an IO package. The DFA package con-
tains externally visible functions and variables from the scanner. Many of the vari-
ables in this package should not be modi�ed by normal user programs, but they are
provided here to allow the user to modify the internal behavior of a
ex to match
speci�c needs. Only the functions YYText and YYLength will be needed by most
programs.

The IO package contains routines which allow yylex to scan the input source �le.
These include the unput, input, output, and yywrap functions from lex,
plus Open Input, Create Output, Close Input and Close Output provided for com-
patibility with alex. It is also possible to write your own IO and DFA packages.

Rede�ning input is possible by changing the YY INPUT procedure. As an example
you might wish to take input from an array instead of from a �le. By changing the
calls to the TEXT IO routines to access elements of the array you can change the
input strategy. If you change the IO or DFA packages you should make a copy of the
generated �les under a di�erent name and change that, because a
ex will overwrite
them whenever you rerun a
ex.

4

with <rootname> DFA;
with <rootname> IO;
with TEXT IO;

-- User Speci�ed Context

function yylex return Token is

begin

-- Analysis of expressions
-- Execution of user-de�ned actions

end yylex;

-- User Speci�ed Context

Figure 3: Example of File Containing Lexical Analyzer

Before showing the general layout of the speci�cation �le, we will describe the speci�cation
language of a
ex, namely, regular expressions.

4 Regular Expressions

A
ex distinguishes two types of character sets used to de�ne regular expressions: text
characters and operator characters. A regular expression speci�es how a set of strings
from the input string can be recognized. It contains text characters (which match the
corresponding characters in the strings being compared) and operator characters (which
specify repetitions, choices, and other features). The letters of the alphabet and the digits
are always text characters.

A rule speci�es a sequence of characters to be matched. It must begin in column one.
The set of a
ex operators consists of the following:

" \ { } [] ^ $ < > ? . * + | () /

The meaning of each operator is summarized below:

x -- the character \x"
"x" -- an \x", even if x is an operator.
\x -- an \x", even if x is an operator.
^x -- an x at the beginning of a line.
x$ -- an x at the end of line.
x+ -- 1 or more instances of x.

5

x* -- 0 or more instances of x.
x? -- an optional x.
(x) -- an x.
. -- any character but newline.
x|y -- an x or y.
[xy] -- the character x or the character y.
[x-z] -- the character x, y or z.
[^x] -- any character but x.
<y>x -- an x when a
ex is in start condition y.
{xx} -- the translation of xx from the de�nitions section.

If any of these operators is used in a regular expression as a character literal, it must be
either preceded by an escape character or surrounded by double quotes. For example, to
recognize a dollar sign $, the correct expression is either \$ or "$". Note a quote cannot
be quoted and should therefore be escaped.

A regular expression may not contain any spaces unless they are within in a quoted string
or character class or they are preceded by the "\" operator.

When in doubt, use parentheses. When an a
ex operator needs to be embedded in a
string, it is often neater to quote the entire string rather than just the operator, e.g. the
string "what?" is more readable than both What"?", and What\?.

Rules Interpretations

----- ---------------

a or "a" The character a

Begin or "Begin" The string Begin

\"Begin\" The string "Begin"

^\t or ^"\t" The tab character \t at the beginning of line.

\n$ The newline character \n at the end of line.

There are a few special characters which can be speci�ed in a regular expression:

\n -- newline
\b -- backspace
\t -- tab
\r -- carriage return
\f -- form feed
\ddd -- octal ASCII code

Here is the precedence of the above operators that have precedence.

6

" [] () Highest

+ * ?
...

concatenation
...

| Lowest

Character Classes: Classes of characters can be speci�ed using the operator pair
[]. Within these square brackets, the operator meanings are ignored except
for three special characters: \ and � and ^.

Rules Interpretations

----- ---------------

[^abc] Any character except a, b, or c.

[abc] The single character a, b, or c.

[-+0-9] The - or + sign or any digit from 0 to 9.

[\t\n\b] The tab, newline, or backspace character.

Arbitrary and Optional Characters: The dot, \:", operator matches all char-
acters except newline. The operator ? indicates an optional character of an
expression.

Rules Interpretations

----- ---------------

ab?c Matches either abc or ac.

ab.c Matches all strings of length 4 having a, b and

c as the first, second and fourth letter where the

third character is not a newline.

Repeated Expressions: Repetitions of classes are indicated by the operators �
and +.

Rules Interpretations

----- ---------------

[a-z]+ Matches all strings of lower case letters.

[A-Za-z][A-Za-z0-9]* Indicates all alphanumeric strings with a

leading alphabetic character.

Alternation and Grouping: The operator | indicates alternation and parenthe-
ses are used for grouping complex expressions.

7

Rules Interpretations

----- ---------------

ab|cd Matches either ab or cd.

(ab|cd+)?(ef)* Matches such strings as abefef, efefef, cdef,

or cddd; but not abc, abcd, or abcdef.

Context Sensitivity: a
ex will recognize a small amount of surrounding context.
Two simple operators for this are ^ and $. If the �rst character of an expression
is ^, the expression will only be matched at the beginning of a line. If the very
last character is $, the expression will only be matched at the end of a line.

Rules Interpretations

----- ---------------

^ab Matches ab at the beginning of line.

ab$ Matches ab at the end of line.

De�nitions: The operators f g enclosing a name specify a macro de�nition expan-
sion.

Rules Interpretations

----- ---------------

{INTEGER} If INTEGER is defined in the macro definition

section, then it will be expanded here.

4.1 Prede�ned Variables & Routines

Once a token is matched, the textual string representation of the token may be
obtained by a call to the function yytext which is located in the dfa package. This
function returns type string.

The IO package contains routines which allow yylex to scan the input source �le.
These include the input, output, unput and yywrap functions from lex,
plus Open Input, Create Output, Close Input and Close Output provided for com-
patibility with alex. Note that in alex 1.0 it was mandatory to call the Open Input
and Create Output routines before calling YYLex. This is not required in A
ex.

The default input and output are attached to the �les that Ada considers to be the
standard input and standard output.

The following routines must be used in lieu of the normal text io routines because
of internal bu�ering and read-ahead done by a
ex.

8

input function input return character { inputs a character from the current a
ex
input stream.

unput procedure unput(c : character) { returns a character already read by input
to the input stream. Note that attempting to push back more than one char-
acter at a time can cause a
ex to
raise the exception pushback overflow.

output procedure output(c : character) { outputs a character to the current a
ex
output stream.

yywrap function yywrap return boolean { This function is called when a
ex reaches
the end of �le. If yywrap returns true, a
ex continues with normal wrapup
at end of input. If you wish to arrange for more input to arrive from a new
source then you provide a yywrap which returns false. The default yywrap
return true.

Open Input Open Input(fname : in String) { Uses the �le named fname as the
source for input to YYLex. If this function is not called then the default input
is the Ada standard input.

Open Input Create Output(fname : in String) { Uses the �le named fname as
output for YYLex. If this function is not called then the default output is the
Ada standard output.

Close Input and Close Output These functions have null bodies in a
ex and
are provided only for compatibility with alex.

There are a few prede�ned subroutines that may be used once a token is matched. In
many lexical processing applications, the printing of the string returned by yytext,
i.e. put(yytext), is desired and this action is so common that it may be written
as ECHO.

9

5 A
ex Source Speci�cation

The general format of the source �le is

definitions section

%%

rules section

%%

user defined section

\#\#

user defined section

where %% is used as a delimiter between sections and ## indicates where function
yylex will be placed. Both %% and ## must occur in column one.

The de�nitions section is used to de�ne macros which appear in the rules section and
also to de�ne start conditions. The rules section de�nes the regular expressions with
their corresponding actions. These regular expressions, in turn, de�ne the tokens to
be identi�ed by the scanner. The user de�ned section allows the user to de�ne the
context in which the yylex function will be located. The user can include routines
which may be executed when a certain token or condition is recognized.

5.1 De�nitions Section

The de�nitions section may contain both macro de�nitions and start condition def-
initions. Macro and start condition de�nitions must begin in column one and may
be interspersed.

5.1.1 Macros

Macro de�nitions take the form:

name expression

where namemust begin with a letter and contain only letters, digits and underscores,
and expression is any string of characters that name will be textually substituted to
if found in the rule section. At least one space must separate name from expression

in the de�nition. No syntax checking is done in the expression, instead the whole
rule is parsed after expansion. The macro facility is very useful in writing regular
expressions which have common substrings, and in de�ning often-used ranges like
digit and letter. Perhaps its best advantage is to give a mnemonic name to a rather

10

strange regular expression { making it easier for the programmer to debug the
expressions. These macros, once de�ned, can be used in the regular expression by
surrounding them with f and g, e.g., {DIGIT}. For example, the rule

[a-zA-Z]([0-9a-zA-Z])* {put_line ("Found an identifier");}

[0-9]+ {put_line ("Found a number");}

de�nes identi�ers and integer numbers. With macros, the source �le is

LETTER [a-zA-Z]

DIGIT [0-9]

%%

{LETTER}({DIGIT}|{LETTER})* {put_line ("Found an identifier");}

{DIGIT}+ {put_line ("Found a number");}

It is customary, although not necessary, to use all capital letters for macro names.
This allows macros to be easily identi�ed in complex rules. Macro names are case
sensitive, e.g., {DIGIT} and {Digit} are two di�erent macro names.

5.1.2 Start Conditions

Left context is handled in a
ex by start conditions that are de�ned in the macro
de�nition section. Start conditions are declared as follows,

%Start cond1 cond2 ...

where cond1 and cond2 indicate start conditions. Note that %Start may be abbre-
viated as %S or %s.

A condition is set only when the a
ex command ENTER in the action part is executed,
e.g. ENTER cond1;. Thus the expression which has the form <condition>rule will
only be matched when condition is set. Note that a
ex uses ENTER instead of
BEGIN which is used in lex. This is done because BEGIN is a keyword in Ada. The
ENTER command must have parentheses surrounding its argument.

ENTER(cond1);

A
ex also provides exclusive start conditions. These are similar to normal start
conditions except they have the property that when they are active no other rules are
active. Exclusive start conditions are declared and used like normal start conditions
except that the declaration is done with %x instead of %s.

11

5.2 Rules Section

Contained in the rule section are regular expressions which de�ne the format of each
token to be recognized by the scanner. Each rule has the following format:

pattern {action}

where pattern is a regular expression and action is an Ada code fragment enclosed
between f and g. A pattern must always begin in column one.

While a pattern de�nes the format of the token, the action portion de�nes the opera-
tion to be performed by the scanner each time the corresponding token is recognized.
Therefore, the user must provide a syntactically correct Ada code fragment. a
ex

does not check for the validity of the program portion, but rather copies it to the
output package and leaves it to the Ada compiler to detect syntax and semantics
errors. There can be more than one Ada statement in the code fragment. For
example, the rule

%%

begin|BEGIN {copy (yytext, buffer);

Install (yytext,symbol_table);

return RESERVED;}

recognizes the reserved word \begin" or \BEGIN", copies the token string into the
bu�er, inserts it in the symbol table and returns the value, RESERVED.
Note that the user must provide the procedures copy and install along with all
necessary types and variables in the user de�ned section.

5.3 User De�ned Section

The user de�ned section allows the user to specify the context surrounding the yylex
function. ## is used to indicate where the yylex function should be placed. It must
be present in this section and must occur in the �rst column. Any text following ##
on the same line is ignored.

6 Ambiguous Source Rules

When a set of regular expressions is ambiguous, a
ex uses the following rules to
choose among the regular expressions that match the input.

1. The longest string is matched.

12

2. If the strings are of the same length, the rule given �rst is matched.

For example, if input "aabb" matches both "a*" and "aab*" the action associated
with "aab*" is executed because it matches four as opposed to two characters.

7 A
ex and Ayacc

As brie
y mentioned in Section 1, a
ex can be integrated with ayacc to produce a
parser.

Since the parser generated by ayacc expects a value of type token, each a
ex rule
should end with

return (token_val);

to return the appropriate token value. Ayacc creates a package de�ning this token
type from its speci�cation �le, which in turn should be with'ed at the beginning
of the user de�ned section. Thus, this token package must be compiled before the
lexical analyzer. The user is encouraged to read the Ayacc User Manual [TT86] for
more information on the interaction between a
ex and ayacc.

13

8 Appendix A: A Detailed Example

This section shows a complete a
ex speci�cation �le for translating all characters to
uppercase. The following �le, example.l, de�nes rules for recognizing lowercase and
uppercase words. If a word is in lowercase, the scanner converts it to uppercase. In
addition, the frequencies of lower and uppercase words are retained in the two vari-
ables de�ned in the global section. All other characters (spaces, tabs, punctuation)
remain the same.

LOWER [a-z]

UPPER [A-Z]

%%

{LOWER}+ { Lower_Case := Lower_Case + 1;

TEXT_IO.PUT(To_Upper_Case(Example_DFA.YYText)); }

-- convert all alphabetic words in lower case

-- to upper case

{UPPER}+ { Upper_Case := Upper_Case + 1;

TEXT_IO.PUT(Example_DFA.YYText); }

-- write uppercase word as is

\n { TEXT_IO.NEW_LINE;}

. { TEXT_IO.PUT(Example_DFA.YYText); }

-- write anything else as is

%%

with U_Env; -- VADS environment package for UNIX

procedure Example is

type Token is (End_of_Input, Error);

Tok : Token;

Lower_Case : NATURAL := 0; -- frequency of lower case words

Upper_Case : NATURAL := 0; -- frequency of upper case words

function To_Upper_Case (Word : STRING) return STRING is

Temp : STRING(1..Word'LENGTH);

14

begin

for i in 1.. Word'LENGTH loop

Temp(i) := CHARACTER'VAL(CHARACTER'POS(Word(i)) - 32);

end loop;

return Temp;

end To_Upper_Case;

-- function YYlex will go here!!

##

begin -- Example

Example_IO.Open_Input (U_Env.argv(1).s);

Read_Input :

loop

Tok := YYLex;

exit Read_Input

when Tok = End_of_Input;

end loop Read_Input;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT_LINE("Number of lowercase words is => " &

INTEGER'IMAGE(Lower_Case));

TEXT_IO.PUT_LINE("Number of uppercase words is => " &

INTEGER'IMAGE(Upper_Case));

end Example;

This source �le is run through a
ex using the command

% aflex example.l

a
ex produces an output �le called example.a along with two packages, exam-
ple dfa.a and example io.a. Assuming that the main procedure, Example, is used
to construct an object �le called example.out, the Unix command

% example.out example.l

prints to the screen the exact �le example.l with letters in uppercase, i.e. the output
to the screen is

15

LOWER [A-Z]

UPPER [A-Z]

%%

{LOWER}+ { LOWER_CASE := LOWER_CASE + 1;

TEXT_IO.PUT(TO_UPPER_CASE(EXAMPLE_DFA.YYTEXT)); }

-- CONVERT ALL ALPHABETIC WORDS IN LOWER CASE

-- TO UPPER CASE

{UPPER}+ { UPPER_CASE := UPPER_CASE + 1;

TEXT_IO.PUT(EXAMPLE_DFA.YYTEXT); }

-- WRITE UPPERCASE WORD AS IS

\N { TEXT_IO.NEW_LINE;}

. { TEXT_IO.PUT(EXAMPLE_DFA.YYTEXT); }

-- WRITE ANYTHING ELSE AS IS

%%

WITH U_ENV; -- VADS ENVIRONMENT PACKAGE FOR UNIX

PROCEDURE EXAMPLE IS

TYPE TOKEN IS (END_OF_INPUT, ERROR);

TOK : TOKEN;

LOWER_CASE : NATURAL := 0; -- FREQUENCY OF LOWER CASE WORDS

UPPER_CASE : NATURAL := 0; -- FREQUENCY OF UPPER CASE WORDS

FUNCTION TO_UPPER_CASE (WORD : STRING) RETURN STRING IS

TEMP : STRING(1..WORD'LENGTH);

BEGIN

FOR I IN 1.. WORD'LENGTH LOOP

TEMP(I) := CHARACTER'VAL(CHARACTER'POS(WORD(I)) - 32);

END LOOP;

RETURN TEMP;

END TO_UPPER_CASE;

-- FUNCTION YYLEX WILL GO HERE!!

16

##

BEGIN -- EXAMPLE

EXAMPLE_IO.OPEN_INPUT (U_ENV.ARGV(1).S);

READ_INPUT :

LOOP

TOK := YYLEX;

EXIT READ_INPUT

WHEN TOK = END_OF_INPUT;

END LOOP READ_INPUT;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT_LINE("NUMBER OF LOWERCASE WORDS IS => " &

INTEGER'IMAGE(LOWER_CASE));

TEXT_IO.PUT_LINE("NUMBER OF UPPERCASE WORDS IS => " &

INTEGER'IMAGE(UPPER_CASE));

END EXAMPLE;

Number of lowercase words is => 144

Number of uppercase words is => 120

17

9 Appendix B: A
ex Dependencies

This release of a
ex was successfully compiled by VADS 5.5 and Telesoft 1.3a.01
running under Sun Unix 4.0.3. Other machines/systems may support a
ex but have
not been tested.

9.1 Command Line Interface

The following �les are host dependent :

command lineS.a

command lineB.a

�le managerS.a

�le managerB.a

The command line package function initialize command line breaks up the com-
mand line into a vector containing the arguments passed to the program. Note that
modi�cations may need to be made to this �le if the host system doesn't allow di�er-
entiation of upper and lower case on the command line. The external �le manager

package is host dependent in that it chooses the names and su�xes for the generated
�les. It also sets up the �le type standard error to allow error output to appear
on the screen.

If a
ex is to be rehosted, only these �les should need modi�cation. For more detailed
information see the �le PORTING in the a
ex distribution.

18

10 Appendix C: Di�erences between A
ex and

Lex

Although a
ex supports most of the conventions and features of lex, there are some
di�erences that the user should be aware of in order to port a lex speci�cation to
an a
ex speci�cation.

� Source �le's format:

definitions section

%%

rules section

%%

user defined section

-- places yylex function

user defined section

� Although a
ex supports most lex's constructs, it does not implement the fol-
lowing features of lex.

{ REJECT
{ %x | changes to the internal array sizes, but see below.

� Ada style comments are supported instead of C style comments.

� All template �les are internalized.

� The input source �le name must end with a \.l" extension.

� In start conditions ENTER is used instead of BEGIN. This is done because
BEGIN is a keyword in Ada.

11 Appendix D: Di�erences between A
ex and

Alex

While a
ex is intended to be upwardly compatible with Alex, there are a few minor
di�erences. Any major inconsistencies with alex should be considered bugs and
reported.

19

� The ENTER calls must have parentheses around their arguments. Parentheses
were optional in alex.

� It is no longer mandatory to call Open Input and Create Output before calling
YYLex. Previously if output was to be directed to Standard Output it was
recommended that a call of

Create_Output("/dev/tty");

be made. This will still work but because of di�erences in implementation
this may cause di�culties in redirecting output using the unix shell pipes
and redirection. Instead just don't call Open Input and output will go to the
default standard output.

� Compilation order. In previous versions of alex the DFA and IO packages
could be compiled in any order. With a
ex it is necessary to compile the DFA
package �rst, because it contains declarations used by the IO package.

20

12 Appendix E: Known Bugs and Limitations

� Some trailing context patterns cannot be properly matched and generate warn-
ing messages ("Dangerous trailing context"). These are patterns where the
ending of the �rst part of the rule matches the beginning of the second part,
such as "zx*/xy*", where the 'x*' matches the 'x' at the beginning of the
trailing context. (Lex doesn't get these patterns right either.)

� variable trailing context (where both the leading and trailing parts do not have
a �xed length) entails a substantial performance loss.

� For some trailing context rules, parts which are actually �xed-length are not
recognized as such, leading to the abovementioned performance loss. In par-
ticular, parts using '|' or n are always considered variable-length.

� Nulls are not allowed in a
ex inputs or in the inputs to scanners generated by
a
ex. Their presence generates fatal errors.

� Pushing back de�nitions enclosed in ()'s can
result in nasty, di�cult-to-understand problems like:

{DIG} [0-9] -- a digit

In which the pushed-back text is "([0-9] { a digit)".

� Due to both bu�ering of input and read-ahead, you cannot intermix calls
to text io routines, such as, for example, text io.get() with a
ex rules and
expect it to work. Call input() instead.

� There are still more features that could be implemented (especially REJECT.)
Also the speed of the compressed scanners could be improved.

� The utility needs more complete documentation, especially more information
on modifying the internals.

21

References

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers { Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

[Les75] M. E. Lesk. Lex { a lexical analyzer generator. Technical Report Com-
puting Science Technical Report, 39, Bell Telephone Laboratories, Murray
Hill, NJ, 1975.

[NF88] T. Nguyen and K. Forester. Alex { an ada lexical analysis generator.
Arcadia Document UCI-88-17, University of California, Irvine, 1988.

[TT86] D. Taback and D. Tolani. Ayacc user's manual. Arcadia Document UCI-
85-10, University of California, Irvine, 1986.

22

