Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Modeling and Analysis Suite for Real Time Applications
(MAST)

Description of the MAST Model

By: José Maria Drake drakej@unican.es
Michael Gonzalez Harbour mgh@unican.es
José Javier Gutiérrez gutierjj@unican.es
José Carlos Palencia palencij@unican.es

CopyrightJ 2000 Universidad de Cantabria, SPAIN

1. Introduction

In this document we describe the basic characteristics of MAST, a Modeling and Analysis
Suite for Real-Time Applications. MAST is still under development and tries to provide an
open source set of tools that enable engineers developing real-time applications to perform
schedulability analysis of their application.

The motivations for developing MAST are mainly that the schedulability analysis techniques
have evolved a lot in the past decade, and in particular for fixed priority scheduled systems,

such as those built with commercial operating systems or commercial languages. Today a full

set of techniques exists for event-driven distributed real-time systems.

The new aspects that cannot be found in other tools that we know about are the following:

* A very rich model of the real time system is used. It is an event-driven model in which

complex dependence patterns among the different tasks can be established. For example,
tasks may be activated with the arrival of several events, or may generate several events

at their output. This makes it ideal for analyzing real-time systems that have been
designed using UML or similar design tools, which have event driven models of the
system.

» The latest offset-based analysis techniques are used to enhance the results of the analysis.

These techniques are much less pessimistic than previous schedulability analysis
techniques.

» The toolset will be open source and fully extensible. That means that other teams may
provide enhancements. The first version is intended for fixed priority systems, but
dynamically scheduled systems may be added in the future.

2. Requirements

Develop a model to describe event-driven real time systems, with the following characteristics:

» Open model, that can include new characteristics or viewpoints of the system

Description of the MAST Model- 18/12/60Page 1

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Should be able to handle most real-time systems built using commercial standard
operating systems and languages (i.e., POSIX and Ada). This implies fixed priority
scheduled systems, but the system will be extended in the future to other scheduling
algorithms (EDF,...). Among fixed priorities, different scheduling strategies should be
allowed:

- preemptive and non preemptive
- interrupt service routines
- sporadic servers
- polling
Should be able to handle distributed systems.

Emphasis is on event-driven systems in which each task may conditionally generate
multiple events at its completion. A task may be activated by a conditional combination
of one or more events. The external events arriving at the system should be of different
kinds:

- periodic

- unbounded aperiodic

- sporadic

- bursty

- singular (arriving only once)

The system model should be rich enough to facilitate the independent description of
overhead parameters such as:

- Processor overheads.
- Network Overheads
- Network driver overheads

Timing requirements should be allowed to be both hard and soft. Deadlines as well as
maximum output jitter requirements should be allowed.

The tool will provide the user with capabilities to automatically calculate the following
system parameters:

- optimum priorities
- possibility of deadlocks

- priority ceilings for shared resources

The model is included in a toolset, with the following elements:

The model is specified through an ASCII description that serves as the input of the
analysis tools.

Graphical editors and other tools generate the system using this ASCII description

A parser converts the ASCII description of the system into an Ada data structure that is
used by the tools

Description of the MAST Model- 18/12/60Page 2

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

* A module exist to convert the Ada data structure back to the ASCII description

The MAST environment will integrate the following tools described in Figure 1:

Graphical Ar!alysis.and Graphic
Editor simulation display of
tools results

MAST system Results
description Description

Standard UML Model +
Real-Time View

Figure 1. MAST toolset environment

The analysis tools will perform different kinds of worst-case analysis to determine the
schedulability of the system. Blocking times relative to the use of shared resources will be
calculated automatically.

The simulation tools will be able to simulate the behavior of the system to check soft timing
requirements

The graphical editor will allow the user describing the system and invoking the analysis tools.
A graphical display of results will be available.

Using a (non real-time) UML tool, it will be possible to describe a real-time view of the system

by adding the appropriate classes and objects that are necessary to have the real-time behavior
of the system described, and linking the system design with the real-time view as appropriate.
Then, an automatic tool will extract the real-time description of the system from the UML
description, generating the MAST description file. No special framework is needed with this
approach, but the designer must incorporate the real-time view into the UML description.

3. Real-Time System Model

A real-time system is modeled as a set of transactions. Each transaction is activated from one
or more external events, and represents a set of activities that are executed in the system.
Activities generate events that are internal to the transaction, and that may in turn activate other
activities. Special event handling structures exist in the model to handle events in special ways.
Internal events may have timing requirements associated with them.

Figure 2 shows an example of a system with one of its transactions highlighted. Transactions
are represented through graphs showing the event flow. This particular transaction is activated
by only one external event. After two activities have been executed, a multicast event handling
object is used to generate two events that activate the last two activities in parallel.

Description of the MAST Model- 18/12/60Page 3

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Transaction

_>
Activity Activity Multicast /
External Internal

——| 4‘ P
Event Event

Event
Handler

Event Event

|
|
|
|
Handler Handler I

Timing
Requirement Fent

Handlers

Transaction

Figure 2. Real-Time System composed of transactions

We call the “boxes” that are included in the transadieent HandlersAs we have
mentioned, there are event handlers that just manipulate events, IMaltiastevent
handler in Figure 2. Another very important event handler &carity, which represents the
execution of an operation, i.e., a procedure or function in a processor, or a message
transmission in a network.

The elements that define an activity are described in Figure 3. We can see that each activity is
activated by oneput eventand generates amtput eventvhen completed. If intermediate

events need to be generated, the activity would be partitioned into the appropriate parts. Each
activity executes a@peration which represents a piece of code (to be executed on a
processor), or a message (to be sent through a network). An operation may have a list of
Shared Resourcehat it needs to use in a mutually exclusive way.

The activity is executed by@cheduling Servewhich represents a schedulable entity in the
Processing Resourde which it is assigned (a processor or a network). For example, the model
for a scheduling server in a processor is a task. A task may be responsible of executing several
activities (procedures). The scheduling server is assigietieduling Parametebject that
contains the information on the scheduling policy and parameters used.

4. Elements of the MAST model

In this section we review in detail the particular classes and attributes of the different elements
of the MAST model. The elements that we will review are:

» Processing Resources

» System Timers

* Network Drivers

» Scheduling parameters (policies, priorities...)

» Scheduling Servers (tasks, processes, threads,...)

Description of the MAST Model- 18/12/00Page 4

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Shared Processing
Resources Resources
~el B Operation Scheduling T ’
7 Server [~
» v .
\ e \
\ - N -
' - T~~~ _ p| Scheduling
Event - Event Parameters
Activity —;—V
|
Event !
Handler :
Timing

Requirement

Figure 3. Elements that define an activity

» Shared resources (for mutually exclusive access)
» Operations (procedures, functions, messages,...)
* Events

» Timing Requirements

» Event Handlers

* Transactions

4.1 Processing Resources

Common attributes:
* Name A string.

» Max Priority andMin Priority. They define the range of priorities valid for normal
operations on that processing resource. Special operations (such as interrupt service
routines in processors) may have other priority ranges.

» Speed factorAll execution times will be expressed in normalized units. The real
execution time is obtained by dividing the normalized execution time by the speed factor.
The default value is 1.0.

Classes of Processing Resources:

» Fixed Priority Processorit represents a processor scheduled with fixed priorities. It has
the following additional attributes:

- Max Interrupt priorityandMin Interrupt priority. They define the range of
priorities valid for activities scheduled by an interrupt service routine.

Description of the MAST Model- 18/12/60Page 5

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Context Switch Overhea@®/orst, Average, Best).
ISR Switch Overhead¥®Vorst, Average, Best).

System TimeA reference to the system timer used (see below), that influences the
overhead of th&ystem Timed Activities

Processing_Resource (

Type => Fixed_Priority_Processor ,
Name => |dentifier,

Max_Priority => Priority,

Min_Priority => Priority,
Max_Interrupt_Priority => Interrupt_Priority,
Min_Interrupt_Priority => Interrupt_Priority,
Worst_Context_Switch => Normalized_Execution_Time,
Avg_Context_Switch => Normalized_Execution_Time,
Best_Context_Switch => Normalized_Execution_Time,
Worst_ISR_Switch => Normalized_Execution_Time,
Avg_ISR_Switch => Normalized_Execution_Time,
Best ISR_Switch => Normalized_Execution_Time,
System_Timer => System_ Timer ,
Speed_Factor => Float);

» Fixed Priority Networklt represents a network that uses a priority based protocol for
sending messages. There are networks that support priorities in their standard protocols
(i.e., the CAN bus), and other networks that need an additional protocol that works on
top of the standard ones (i.e., serial lines, ethernet). It has the following additional
attributes:

Processing_|
Type

Packet Overhea@Worst, Average, Best). This is the overhead associated to
sending each packet, because of the protocol messages that need to be sent before
or after each packet.

Transmission kindSimplexHalf Duplex of Full Duplex

Max Blocking The maximum blocking is caused by the non preemptability of
message packets. It usually has the same value as the maximum packet
transmission time, but its default value is zero, for the case in which the network
overhead is negligible.

Max Packet Transmission TimedMin Packet Transmission Tim&he maximum

time is used in the calculation of the overhead model of the network; the overhead
Is the packet overhead times the number of packets, which is calculated as the
message transmission time divided by the maximum packet transmission time. The
Minimum time represents the shortest period of the overheads associated to the
transmission of each packet, and thus has a strong impact on the overhead caused
by the network drivers in the processors using the network.

List of Drivers A list of references to network drivers, that contain the processor
overhead model associated with the transmission of messages through the network.
See the description of the drivers below.

Resource (
=> Fixed_Priority_Network ,

Description of the MAST Model- 18/12/60Page 6

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Name => |dentifier,
Max_Priority => Priority,
Min_Priority => Priority,
Packet_Worst_Overhead => Normalized_Execution_Time,
Packet_Avg_Overhead => Normalized_Execution_Time,
Packet_Best_Overhead => Normalized_Execution_Time,
Transmission => Simplex | Half Duplex | Full_Duplex
Max_Blocking =>Time ,
Max_Packet_Transmission_Time =>Time ,
Min_Packet_Transmission_Time =>Time ,
Speed_Factor => Float ,
List_of_Drivers => (

Driver1

Driver 2

-));

4.2 System Timers

They represent the different overhead models associated with the way the system handles
timed events. There are two classes:

» Alarm Clock This represents systems in which timed events are activated by a hardware
timer interrupt. The timer is programmed always to generate the interrupt at the time of
the closest timed event. Consequently, each one can have its own interrupt. This
represents an overhead. The attributes are:

- Overheadworst, average and best). This is the overhead of the timer interrupt,
which is assumed to execute at the highest interrupt priority.

System_Timer =(

Type => Alarm Clock

Worst_Overhead => Normalized_Execution_Time,
Avg_Overhead => Normalized_Execution_Time,
Best_Overhead => Normalized_Execution_Time,

» Ticker This represents a system that has a periodic ticker, i.e., a periodic interrupt that
arrives at the system. When this interrupt arrives, all timed events whose expiration time

has already passed, are activated. Other non timed events are handled at the time they are

generated. In this model, the overhead by the timer interrupt is localized in a single
periodic interrupt, but jitter is introduced in all timed events, because the best resolution
is the ticker period. The attributes are:

- Overheadworst, average and best). This is the overhead of the timer interrupt,
which is assumed to execute at the highest interrupt priority.

- Period Period of the ticker interrupt.

System_Timer =(

Type => Ticker
Worst_Overhead => Time,
Avg_Overhead => Time,
Best_Overhead => Time,
Period =>Time)

Description of the MAST Model- 18/12/60Page 7

4.3 Network Drivers

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

| . . .
1 They represent operations executed in a processor as a consequence of the transmission or

reception of a message or a message packet through a network. We define two classes:

» Packet Driver Represents a driver that is activated at each message transmission or

reception. Its attributes are:

- Packet serverThe scheduling server that is executing the driver (which in turn has
a reference to the processor, and the scheduling parameters)

- Packet Send Operatioithe operation that is executed each time a packet is sent.

- Packet Receive Operatiofhe operation that is executed each time a packet is

received.

Driver =(
Type
Packet_Server
Packet_Send_Operation
Packet_Receive_Operation

Packet Driver
Scheduling_Server
Operation
Operation)

» Character Packet Drivelt is a specialization of a packet driver in which there is an
additional overhead associated to sending each character, as happens in some serial lines.
Its attributes are those of a packet driver plus the following:

- Character serverThe scheduling server that is executing the part of the driver that
is executed for each character sent or received (which in turn has a reference to the
processor, and the scheduling parameters)

- Character Send Operatioifhe operation that is executed each time a character is

sent.

- Character Receive Operatioifhe operation that is executed each time a character

iS received.

- Character Transmission Tim&ime of character transmission.

Driver =(
Type
Packet_Server
Packet_Send_Operation
Packet Receive_Operation
Character_Server
Character_Send_Operation
Character_Receive_Operation
Character_Transmission_Time

4.4 Scheduling parameters

Character_Packet_Driver ,
Scheduling_Server
Operation

Operation,
Scheduling_Server
Operation

Operation,

=> Time)

They represent the fixed priority scheduling policies and their associated parameters. The

common attribute is:

* Priority.

Description of the MAST Model- 18/12/60Page 8

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

The classes defined are:

» Non Preemptible Fixed Priority Schedul®&lo additional attributes.

Fixed_Priority_Sched_Parameters =(
Type => Non_Preemtible_FP_Policy ,
The_Priority => Priority)
» Fixed Priority ScheduleiRepresents a fixed priority preemptive scheduler. No additional
attributes.
Fixed_Priority_Sched_Parameters =(
Type => Fixed_Priority_Policy ,
The_Priority => Priority)

* Interrupt Fixed Priority ScheduleRepresents an interrupt service routine. No additional
attributes.

Fixed_Priority Sched_Parameters
Type => Interrupt_FP_Policy ,
The_Priority => Interrupt_Priority)

1
—~

» Polling SchedulerRepresents a periodic task that polls for the arrival of its input event.
Thus, execution of the event may be delayed until the next period. Its additional
attributes are:

- Polling Period Period of the polling task
- Polling OverheadqWorst, Average, Best). Overhead of the polling task.

Fixed_Priority Sched_Parameters =(
Type => Polling_Policy ,
The_Priority => Priority,
Polling_Period => Time,
Polling_Worst_Overhead => Normalized_Execution_Time,
Polling_Avg_Overhead => Normalized_Execution_Time,
Polling_Best_Overhead => Normalized_Execution_Time)

» Sporadic Server Schedul&epresents a task scheduled under the sporadic server
scheduling algorithm. Its additional attributes are:

- Background PriorityRepresents the priority at which the task executes when there
IS no available execution capacity

- Initial Capacity Its the initial value of the execution capacity.

- Replenishment Periodt is the period after which a portion of consumed execution
capacity is replenished.

- Max Pending replenishments is the maximum number of simultaneously
pending replenishment operations.

Fixed_Priority_Sched_Parameters =(
Type => Sporadic_Server_Policy ,
Normal_Priority => Priority,
Background_Priority => Priority,

Description of the MAST Model- 18/12/60Page 9

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Initial_Capacity => Time,
Replenishment_Period =>Time,
Max_Pending_Replenishments => Positive)

The scheduling parameters may also be overridden on the operations definition.

Overridden_Sched _Parameters =(
Type => Overridden_Fixed_Priority ,
The_Priority => Any_Priority)

4.5 Scheduling Servers

They represent schedulable entities in a processing resource. There is only one class defined,
namedRegular Its attributes are:

* Name
» Scheduling ParameterReference to the scheduling parameters

» Processing Resourc®eference to the scheduling resource

Scheduling_Server (

Type => Fixed_Priority ,

Name => |dentifier,

Server_Sched_Parameters => Fixed_Priority_Sched Parameters ,
Server_Processing_Resource => |dentifier);

4.6 Shared Resources

They represent resources that are shared among different tasks, and that must be used in a
mutually exclusive way. Only protocols that avoid unbounded priority inversion are allowed.
There are two classes, depending on the protocol:

» Immediate Ceiling Resourcdses the immediate priority ceiling resource protocol. This
is equivalent to Ada'®riority Ceiling, or the POSIXpriority protectprotocol. Its
attributes are:

- Name

- Ceiling. Priority ceiling used for the resource. May be computed automatically by
the tool, upon request.

Shared_Resource (

Type => |mmediate_Ceiling_Resource ,
Name => |dentifier,
Ceiling => Any_Priority);

» Priority Inheritance ResourcéJses the basic priority inheritance protocol. Its attributes
are:

- Name

Shared_Resource (

Description of the MAST Model- 18/12/60Page 10

Type
5 b Name

4.7 Operations

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

=> Priority_Inheritance_Resource ,
=> |dentifier);

They represent a piece of code, or a message. They all have the following common attributes:

» Execution Timg¢Worst, Average and Best). In normalized units. For messages, this

represents the transmission time.

» Overridden Scheduling ParameteRepresents a priority level above the normal priority
level that at which the operation would execute. The overridden priority is in effect only

until the operation is completed.

The following classes of operations are defined:

» Simple Represents a simple piece of code or message. Additional attributes are:

- Shared resources to lockist of references to the shared resources that must be
locked before executing the operation

- Shared resources to unlodkist of references to the shared resources that must be
unlocked after executing the operation

- Shared resources list

Operation (
Type
Name
Overridden_Sched_Parameters
Worst_Case Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time
Shared_Resources_To_Lock

Shared_Resources_To_Unlock

Operation (
Type
Name
Overridden_Sched_Parameters
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best Case_ Execution_Time
Shared_Resources_List

=> Simple ,

=> |dentifier,

=> Qverridden_Sched_Parameters ,
=> Normalized_Execution_Time,
=> Normalized_Execution_Time,
=> Normalized_Execution_Time,
=> (

Identifier,

Identifier,

o)

=> (

Identifier,

Identifier,

-));

=> Simple ,

=> |dentifier,

=> Overridden_Sched_Parameters ,
=> Normalized_Execution_Time,

=> Normalized_Execution_Time,

=> Normalized_Execution_Time,

=> (

Identifier,

Identifier,

-));

Description of the MAST Model- 18/12/G0Page 11

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

» CompositeRepresents an operation composed of an ordered sequence of other
operations, simple or composite. The execution time attribute of this class cannot be set,
because it is the sum of the execution times of the comprised operations. Its additional
attributes are:

- Operation List List of references to other operations

Operation (
Type => Composite ,
Name => |dentifier,
Overridden_Sched_Parameters => OQverridden_Sched_Parameters ,
Composite_Operation_List =>(
Identifier,
Identifier,

-));

» Enclosing Represents an operation that contains other operations as part of its execution.
The execution time is not the sum of execution times of the comprised operations,
because other pieces of code may be executed in addition. The enclosed operations need
to be considered for the purpose of calculating the blocking times associated with their
shared resource usage. Its additional attributes are:

- Operation List List of references to other operations

Operation (
Type => Enclosing
Name => |dentifier,
Overridden_Sched_Parameters => Overridden_Sched_Parameters ,
Worst_Case_Execution_Time => Normalized_Execution_Time,
Avg_Case_Execution_Time => Normalized_Execution_Time,
Best_Case_Execution_Time => Normalized_Execution_Time,
Composite_Operation_List =>(
Identifier,
Identifier,
)k
4.8 Events

Events may be internal or external, and represent channels of event streams, through which
individual event instances may be generated. An event instance activates an instance of an
activity, or influences the behavior of the event handler to which it is directed.

* Internal eventsThey are generated by an event handler. Their attributes are:
- Name

- Timing Requirement&Rkeference to the timing requirements imposed on the
generation of the event. See the description of timing requirements below

Internal_Event

(

Type => Regular |,
Event => |dentifier)
Timing_Requirements => Timing_Requirement)

Description of the MAST Model- 18/12/G0Page 12

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

For the external events, the following classes are defined:

» Periodic Represents a stream of events that are generated periodically. They have the
following attributes:

- Name
- Period Event period.

- Max Jitter The event jitter is an amount of time that may be added to the activation
time of each event instance, and is bounded by the maximum jitter attribute. It
influences the schedulability of the system.

- Phase It is the instant of the first activation, if it had no jitter. After that time, the
following events are periodic (possibly with jitter).

External _Event =(
Type => Periodic ,
Name => |dentifier,
Period => Time,
Max_Jitter => Maximum jitter of Periodic event ,
Phase => Absolute_Time);

» Singular Represents an event that is generated only once. It has the following attributes:
- Name

- Phaselt is the instant of the first activation.

External _Event =(
Type => Singular
Name => |dentifier,
Phase => Absolute_Time);

» Sporadic Represents a stream of aperiodic events that have a minimum interarrival time.
They have the following attributes:

- Name
- Min Interarrival. Minimum time between the generation of two events.
- Average Interarrival Average interarrival time

- Distribution. It represents the distribution function of the aperiodic events. It can
be Uniform or Poisson

External _Event =(
Type => Sporadic ,
Name => |dentifier,
Avg_Interarrival => Time,
Distribution => Uniform | Poisson ,
Min_lInterarrival => Time);

* UnboundedRepresents a stream of aperiodic events for which it is not possible to
establish an upper bound on the number of events that may arrive in a given interval.
They have the following attributes:

Description of the MAST Model- 18/12/G0Page 13

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

- Name
- Average Interarrival Average interarrival time

- Distribution. It represents the distribution function of the aperiodic events. It can
be Uniform or Poisson

External _Event =(
Type => Unbounded,
Name => |dentifier,
Avg_Interarrival => Time,
Distribution => Uniform | Poisson);

» Bursty Represents a stream of aperiodic events that have an upper bound on the number
of events that may arrive in a given interval. Within this interval, events may arrive with
an arbitrarily low distance among them (perhaps as a burst of events). They have the
following attributes:

- Name

- Bound_Intervalinterval for which the amount of event arrivals is bounded

- Max_Arrivals Maximum number of events that may arrive inBoaind_Interval
- Average Interarrival Average interarrival time.

- Distribution. It represents the distribution function of the aperiodic events. It can
be Uniform or Poisson

External _Event =(
Type => Bursty ,
Name => |dentifier,
Avg_Interarrival => Time,
Distribution => Uniform | Poisson ,
Bound_Interval => Time,
Max_Arrivals => Positive);

4.9 Timing Requirements

They represent requirements imposed on the instant of generation of the associated internal
event. There are different kinds of requirements:

» Deadlines They represent a maximum time value allowed for the generation of the
associated event. They are expressed as a relative time interval that is counted in two
different ways:

- Local Deadlinesthey appear only associated with the output event of an activity;
the deadline is relative to the arrival of the event that activated that activity.

- Global deadlinesthe deadline is relative to the arrival odRaferenced Eventhat
is an attribute of the deadline.

In addition, deadlines may be hard or soft:
- Hard Deadlinesthey must be met in all cases, including the worst case

- Soft Deadlinesthey must be met on average.

Description of the MAST Model- 18/12/0(Page 14

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

This gives way to four kinds of deadlines:

- Hard Global DeadlineAttributes are the value of tl#eadline and a reference to
theReferenced Event

- Soft Global DeadlineAttributes are the value of tieadline and a reference to
theReferenced Event

- Hard Local DeadlineThe only attribute is the value of tbeadline

- Soft Local DeadlineThe only attribute is the value of tbeadline

Timing_Requirement = (
Type => Hard_Global_Deadline ,
Deadline => Time,
Referenced_Event => |dentifier)
Timing_Requirement = (
Type => Hard_Local_Deadline
Deadline => Time)
Timing_Requirement = (
Type => Soft_Global_Deadline ,
Deadline => Time,
Referenced_Event => |dentifier)
Timing_Requirement = (
Type => Soft_Local Deadline ,
Deadline => Time)

* Max Output Jitter RequiremerRRepresents a requirement for limiting the jitter with
which a periodic internal event is generated. Output jitter is calculated as the difference
between the worst-case response time and the best-case response time for the associated
event, relative to Referenced Evetthat is an attribute of this requirement.
Consequently, the attributes are:

- Max Output JitterTime value.

- Referenced EvenReference to an event.

Timing_Requirement = (
Type => Max_Output_Jitter_Req ,
Max_Output_Jitter => Time,
Referenced_Event => |dentifier)

* Max Miss RatioRepresents a kind of soft deadline in which the deadline cannot be
missed more often than a specified ratio. Its attributes are

- Deadline. Time Value
- Ratio. Percentage representing the maximum ratio of missed deadlines
There are two kinds of Max Miss Ratio requirements: global or local:

- Local Max Miss RatioThe deadline is relative to the activation of the activity to
which the timing requirement is attached. It has no additional attributes.

Description of the MAST Model- 18/12/G0Page 15

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

- Global Max Miss RatioThe deadline is relative toReferenced Evenivhich is an
additional attribute of this class.

Timing_Requirement = (
Type => Global_Max_Miss_Ratio ,
Deadline => Time,
Ratio => Percentage,
Referenced_Event => |dentifier)
Timing_Requirement = (
Type => Local_Max_Miss_Ratio ,
Deadline => Time,
Ratio => Percentage)

» CompositeAn event may have several timing requirements imposed at the same time,
which are expressed via a composite timing requirement. It is just a list of simple timing
requirements.

Timing_Requirement = (
Type => Composite ,
Requirements_List =>(

Timing_Requirement 1 ,
Timing_Requirement 2 ,

)

4.10 Event Handlers

Event handlers represent actions that are activated by the arrival of one or more events, and that
in turn generate one or more events at their output. There are two fundamental classes of event
handlers. Théctivitiesrepresent the execution of an operation by a scheduling server, in a
processing resource, and with some given scheduling parameters. The other operations are just
a mechanism for handling events, with no runtime effects. Any overhead associated with their
implementation is charged to the associated activities. Figure 4 shows the different classes of
events.

Activity / Rate Divisor / Delay / Offset

— —
Concentrator ~a Barrier
Delivery / Query Server Multicast

—>

ed red

Figure 4. Classes of Event Handlers

Description of the MAST Model- 18/12/G0Page 16

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Activity. It represents an instance of an operation, to be executed by a scheduling server.
Its attributes are:

- Input eventReference to the event
- Output eventReference to the event
- Activity Operation Reference to the operation

- Activity serverReference to the scheduling server (which in turn contains
references to the scheduling parameters and the processing resource).

Event Handler = (

Type => Activity
Input_Event => |dentifier,
Output_Event => |dentifier,
Activity_Operation => |dentifier,
Activity _Server => |dentifier)

System Timed Activitit represents an activity that is activated by the system timer, and
thus is subject to the overheads associated with it. It only makes sense t&Ghisiema
Timed Activitythat is activated from an external event, or an event generatedbgidlye

or Offsetevent handlers (see below). It has the same attributes as the regular activity.

Event Handler = (

Type => System_Timed_Activity ,
Input_Event => |dentifier,

Output_Event => |dentifier,

Activity_Operation => |dentifier,

Activity _Server => |dentifier)

Concentratorlt is an event handler that generates its output event when any one of its
input events arrives. Its attributes are:

- Input eventsReferences to the input events

- Output eventReference to the output event

Event Handler = (

Type => Concentrator
Output_Event => |dentifier,
Input_Events_List =>(

Identifier,

Identifier,

)

Barrier. It is an event handler that generates its output event when all of its input events
have arrived. For worst-case analysis to be possible it is necessary that all the input
events are periodic with the same periods. This usually represents no problem if the
concentrator is used to performjait\” operation after afork” operation carried out

with theMulticastevent handler (see below). Its attributes are:

- Input eventsReferences to the input events

- Output eventReference to the output event

Description of the MAST Model- 18/12/G0Page 17

Event Handler = (
Type
Output_Event
Input_Events_List

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

=> Barrier ,
=> |dentifier,
:>(

Identifier,
Identifier,

)

» Delivery Serverlt is an event handler that generates one event in only one of its outputs
each time an input event arrives. The output path is chosen at the time of the event

generation. Its attributes are:

- Input eventReference to the input event

- Output eventsReferences to the output events

- Delivery Policy Is the policy used to determine the output path. It mé&che(the
output path is chosen in a cyclic fashionRandom

Event Handler = (
Type
Delivery_Policy
Input_Event
Output_Events_List

=> Delivery_Server ,
=> Scan|Random,

=> |dentifier,

=> (

Identifier,

Identifier,

)

* Query Serverlt is an event handler that generates one event in only one of its outputs
each time an input event arrives. The output path is chosen at the time of the event
consumption by one of the activities connected to an output event. Its attributes are:

- Input eventReference to the input event

- Output eventsReferences to the output events

- Request Policys the policy used to determine the output path when there are
several pending requests from the connected activities. It magdmgthe output
path is chosen in a cyclic fashioRYyjority (the highest priority activity wins),

FIFO or LIFO.

Event Handler = (
Type
Request_Policy
Input_Event
Output_Events_List

=> Query_Server ,

=> Priority|FIFO|LIFO|Scan ,
=> |dentifier,

:>(

Identifier,

Identifier,

)

* Multicast It is an event handler that generates one event in every one of its outputs each
time an input event arrives. Its attributes are:

- Input eventReference to the input event

- Output eventsReferences to the output events

Description of the MAST Model- 18/12/G0Page 18

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Event Handler = (

Type => Multicast
Input_Event => |dentifier,
Output_Events_List =>(
Identifier,
Identifier,

)

* Rate Divisorlt is an event handler that generates one output event when a number of
input events equal to tliRate Factorhave arrived. Its attributes are:

- Input eventReference to the input event
- Output eventReference to the output event

- Rate FactorNumber of events that must arrive to generate an output event

Event Handler = (

Type => Rate Divisor ,
Input_Event => |dentifier,
Output_Event => |dentifier,
Rate_Factor => Positive)

» Delay It is an event handler that generates its output event after a time interval has
elapsed from the arrival of the input event. Its attributes are:

- Input eventReference to the input event
- Output eventReference to the output event
- Delay Max IntervalLongest time interval used to generate the output event

- Delay Min Interval Shortest time interval used to generate the output event

Event Handler = (

Type => Delay ,
Input_Event => |dentifier,
Output_Event => |dentifier,
Delay_Max_Interval => Time,
Delay_Min_Interval => Time)

» Offset It is similar to theDelay event handler, except that the time interval is counted
relative to the arrival of some (previous) event. If the time interval has already passed
when the input event arrives, the output event is generated immediately. Its attributes are
the same as for tHeelay event handler, plus the following:

- Referenced EvenReference to the appropriate event.

Event _Handler = (

Type => Offset |,
Input_Event => |dentifier,
Output_Event => |dentifier,
Delay_Max_Interval => Time,
Delay_Min_Interval => Time,
Referenced_Event => |dentifier)

Description of the MAST Model- 18/12/G0Page 19

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

4.11 Transactions

The transaction is a graph of event handlers and events, that represents activities executed in
the system which are interrelated. A transaction is defined with three different components that
have already been described:

* A list of external events
» Alist of internal events, with their timing requirements if any

* A list of Event handlers

In addition, each transaction haklameattribute. There is only one class of transaction
defined, called &egulartransaction.

Transaction (

Type => Regular ,
Name => |dentifier,
External_Events =>(

External Event 1 ,
External_Event 2 ,

),

Internal_Events =>(
Internal_Event 1 ,
Internal_Event 2 ,

),

Event_Handlers =>(
Event Handler1
Event Handler2

-);

5. Type definitions

The following types are used in the definitions of the components of the MAST File:
* Identifier. String of characters following the rules described in the following section.

 Priority. Positive integer of implementation-defined range, defining the scheduling
priority of tasks.

 Interrupt_Priority. Positive integer of implementation defined range, defining the
scheduling priority of interrupt service routines.

* Any_Priority Positive integer that is either in tReority range or in the
Interrupt_Priority range.

* Normalized_Execution_TimBepresents the execution time of an operation, as executed
by a normalized processing resource of speed factor equal to one. It is obtained by
multiplying the real execution time by the processing resource’s speed factor.

» Time Time interval in unspecified time units.

» Absolute_TimeAbsolute time measured from and arbitrary time origin, in unspecified
units.

Description of the MAST Model- 18/12/60Page 20

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

* Float. It represents any float type.
» Positive Integer positive number (excluding zero).

» Natural. Integer number that is greater than or equal to zero.

6. Writing the MAST File

The rules for writing the file with a real-time system according to the defined real-time system
model are the following:

» Each object has the format:
object_name (arguments);

* Most objects have a type and/or a name argument. In those cases, they are mandatory
arguments, and they have to be defined as the first and second argument, respectively. All
other arguments can go in any order, and are mostly optional.

» Blank spaces, tabs and new lines are ignored.

* Names follow the Ada rules for composite identifiers: begin with a letter, followed by
letters, digits, underscores ('_") or periods ('.").

» Names can be expressed with or without quotes. A quoted name can be the same as one
of the reserved words (appearing in bold face below).

» Each name that is referenced must have been defined earlier in the file.
» Float types without fractional part can be expressed without the decimal point.

* Comments are like in Ada: they begin with two dashes ("--"), anywhere in a line, and end
at the end of the line.

» The description is not case-sensitive.

7. Templates for the MAST File

-- Real-Time System Model
-- File format
-- This line is just an example of a comment

-- Resources

Processing_Resource (

Type => Fixed_Priority Processor ,

Name => Name of the processing resource ,
Max_Priority => Task Priority ,

Min_Priority => Task Priority ,

Max_Interrupt_Priority => [Interrupt Priority ,
Min_Interrupt_Priority => [Interrupt Priority ,
Worst_Context_Switch => WCS Time for Processors ,
Avg_Context_Switch => ACS Time for Processors ,
Best_Context_Switch => BCS Time for Processors ,

Description of the MAST Model- 18/12/60Page 21

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Worst_ISR_Switch => WISR Time for Processors ,
Avg_ISR_Switch => AISR Time for Processors ,
Best_ISR_Switch => BISR Time for Processors ,
System_Timer => System_Timer ,

Speed_Factor => Float);

-- real execution times = normalized execution times/Speed_Factor;
-- Ticker Overhead is real execution time

Processing_Resource (

Type => Fixed_Priority_Network ,
Name => Name of the processing resource ,
Max_Priority => Message Priority ,
Min_Priority => Message Priority ,
Packet Worst Overhead => PWO for Networks
Packet_Avg_Overhead => PAO for Networks
Packet_Best_Overhead => PBO for Networks
Transmission => Simplex | Half_Duplex | Full_Duplex
Max_Packet_Transmission_Time => Max Packet transmission time,
Min_Packet_Transmission_Time => Min Packet transmission time,
Speed_Factor => Float ,
List_of_Drivers => (

Driver1

Driver 2

-));

-- Overheads are normalized execution times.
-- Real execution times = normalized_execution_time/processor speed
-- Packet_Transmission_Time is the real transmission time

-- System Timers

System_Timer =(

Type => Ticker

Worst_Overhead =>Worst Overhead of ticker ,
Avg_Overhead =>Avg Overhead of ticker ,
Best_Overhead =>Best Overhead of ticker ,
Period => Period of ticker for Processors)

System_Timer =(

Type => Alarm Clock
Worst_Overhead =>Worst Overhead of timer ,
Avg_Overhead => Avg Overhead of timer ,
Best_Overhead => Best Overhead of timer ,
-- Drivers
Driver =(
Type => Packet_Driver ,
Packet_Server => Scheduling_Server
Packet_Send_Operation => Simple Operation
Packet_Receive_Operation => Simple Operation)

-- The scheduling server and the operations are embedded in the
-- description, with all their attributes, but without the keywords

Description of the MAST Model- 18/12/G0Page 22

-- "Scheduling_Server" or "Operation

Driver = (
Type
Packet_Server
Packet_Send_Operation
Packet_Receive_Operation
Character_Server
Character_Send_Operation
Character_Receive_Operation
Character_Transmission_Time

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

=> Character_Packet_Driver ,
=> Scheduling_Server

=> Simple Operation ,

=> Simple Operation,

=> Scheduling_Server

=> Simple Operation ,

=> Simple Operation,

=> Transmission Time)

-- The scheduling server and the operations are embedded in the
-- description, with all their attributes, but without the keywords
-- "Scheduling_Server" or "Operation"

-- Shared Resources

Shared_Resource (
Type
Name
Ceiling

Shared_Resource (

Type
Name

-- Operations

Operation (
Type
Name
Overridden_Sched_Parameters
Worst_Case Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time
Shared_Resources _To_Lock

Shared_Resources_To_Unlock

=> Immediate_Ceiling_Resource
=> Name of the data resource
=> Ceiling of resource, any priority

=> Priority_Inheritance_Resource
=> Name of the data resource

=> Simple ,

=> Name of the operation ,

=> OQverridden_Sched_Parameters

=> WCET

=> ACET

=> BCET

=> (
Shared Resource Name 1
Shared Resource Name 2,
)

=> (
Shared Resource Name 1
Shared Resource Name 2,

-));

-- The resources specified under Shared_Resources_To_Lock are locked

-- before the operation starts, in the order defined.

-- The resources specified under Shared_Resources_To_Unlock are unlocked
-- after the operation completes, in the order defined.

-- WCET, ACET and BCET are normalized execution times.

-- Real execution times = normalized_execution_time/speed factor

Operation (
Type

=> Simple ,

Description of the MAST Model- 18/12/G0Page 23

);

Name
Overridden_Sched_Parameters
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best Case_ Execution_Time
Shared_Resources_List

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

=> Name of the operation ,
=> Overridden_Sched_Parameters ,
=> WCET
=> ACET
=> BCET
=> (
Shared Resource Name 1
Shared Resource Name 2,

-);

-- This is an alternative way to declare a simple object. The resources
-- specified under Shared_Resources_List are locked before the operation
-- starts, in the order defined, and are unlocked when the operation

-- finishes, in the reverse order.

-- WCET, ACET and BCET are normalized execution times.
-- Real execution times = normalized_execution_time/speed factor

Operation (
Type
Name
Overridden_Sched_Parameters
Composite_Operation_List

Operation (
Type
Name
Overridden_Sched_Parameters
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best Case_ Execution_Time
Composite_Operation_List

=> Composite |,
=> Name of the operation ,
=> Overridden_Sched_Parameters ,
=> (
Operation Name 1
Operation Name 2,

-));

=> Enclosing ,
=> Name of the operation ,
=> Overridden_Sched_Parameters ,
=> WCET
=> ACET
=> BCET
=> (
Operation Name 1
Operation Name 2,

-));

-- WCET, ACET and BCET are normalized execution times.
-- Real execution times = normalized_execution_time/speed factor

-- Scheduling Servers

Scheduling_Server (
Type
Name
Server_Sched_Parameters
Server_Processing_Resource

-- Transactions

Transaction (

Type
Name

=> Fixed_Priority ,

=> Name of the server ,

=> Fixed_Priority_Sched Parameters ,
=> Name of the Processing Resource);

=> Regular ,
=> Name of the transaction ,

Description of the MAST Model- 18/12/0Page 24

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

External_Events =>(
External Event 1 ,
External_Event 2 ,
)

Internal_Events =>(
Internal _Event 1 ,
Internal_Event 2 ,
)

Event_Handlers =>(
Event Handler1
Event Handler2

-);

-- External Events

External_Event =(
Type => Periodic ,
Name => Name of the event ,
Period => Period of the Periodic event ,
Max_Jitter => Maximum jitter of Periodic event ,
Phase => Phase of Periodic event);

-- The Phase represents the absolute start time of the first period,
-- i.e., the first event generation time if Max_Jitter=0

External_Event =(
Type => Singular ,
Name => Name of the event ,
Phase => Phase of Periodic event);

-- The Phase represents the absolute time at which the event
-- is generated

External _Event =(
Type => Sporadic ,
Name => Name of the event ,
Avg_Interarrival => Average interarrival time ,
Distribution => Uniform | Poisson ,
Min_Interarrival => Minimum interarrival time);
External _Event =(
Type => Unbounded,
Name => Name of the event ,
Avg_Interarrival => Average interarrival time ,
Distribution => Uniform | Poisson);
External _Event =(
Type => Bursty ,
Name => Name of the event ,
Avg_Interarrival => Average interarrival time ,
Distribution => Uniform | Poisson ,
Bound_Interval => |[nterval of Bursty events ,
Max_Arrivals => Maximum number of arrivals);

Description of the MAST Model- 18/12/G0Page 25

-- Timing requirements

Timing_Requirement = (
Type
Deadline
Referenced_Event

Timing_Requirement = (

Type
Deadline

Timing_Requirement = (
Type
Deadline
Referenced_Event

Timing_Requirement = (

Type
Deadline

Timing_Requirement = (
Type
Deadline
Ratio
Referenced_Event

Timing_Requirement = (
Type
Deadline
Ratio

Timing_Requirement = (
Type
Max_Output_Jitter
Referenced_Event

Timing_Requirement = (

Type
Requirements_List

-- Scheduling Parameters

Fixed_Priority Sched_Parameters

Type
The_Priority

Fixed_Priority_Sched_Parameters
Type

Grupo de Computadores y Tiempo Real

=> Hard_Global_Deadline
=> Deadline ,
=> Name of Event)

=> Hard_Local_Deadline
=> Deadline)

=> Soft_Global_Deadline
=> Deadline ,
=> Name of Event)

=> Soft_Local_Deadline
=> Deadline)

Universidad de Cantabria

=> Global_Max_Miss_Ratio ,

=> Deadline ,
=> Percentage ,
=> Name of Event)

=> Local_Max_Miss_Ratio
=> Deadline ,
=> Percentage)

=> Max_Output_Jitter_Req
=> Maximum output jitter
=> Name of Event)

=> Composite ,

:>(
Timing_Requirement 1 ,
Timing_Requirement 2 ,

"))

=> Non_Preemtible_FP_Policy ,

=> Priority)

=> Fixed_Priority_Policy

Description of the MAST Model- 18/12/G0Page 26

The_Priority

Fixed_Priority_Sched_Parameters

Type
The_Priority

Fixed_Priority_Sched_Parameters
Type
The_Priority
Polling_Period
Polling_Worst_Overhead
Polling_Avg_Overhead
Polling_Best_Overhead

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

=> Priority)

=> |Interrupt_FP_Policy ,
=> |Interrupt Priority)

=> Polling_Policy ,

=> Priority ,

=> Period of polling

=> Worst overhead of polling

=> Average overhead of polling

=> Best overhead of polling)

-- Polling overheads are relative execution times

Fixed_Priority_Sched_Parameters
Type
Normal_Priority
Background_Priority
Initial_Capacity
Replenishment_Period

Max_Pending_Replenishments

Overridden_Sched_Parameters

Type
The_Priority

-- Internal Events

Internal _Event =(
Type
Event
Timing_Requirements

(

=> Sporadic_Server_Policy ,
=> Priority ,
=> Background priority ,
=> |Initial Capacity ,
=> Replenishment period ,
=> Maximum of pending replenishment

=> Overridden_Fixed_Priority ,
=> Priority)

=> Regular ,
=> Name of the event)
=> Timing_Requirement)

-- Note: Events can be internal or external. External events are declared

-- as described before.

-- Internal events are declared as part of the transaction.
-- Each event can only be referenced by one event handler as an input
-- event, and by one event handler as an output event

-- Event Handlers

Event Handler = (
Type
Input_Event
Output_Event
Activity_Operation
Activity_Server

Event Handler = (

Type
Input_Event

=> Activity ,

=> Name of the Event ,

=> Name of the Event ,

=> Name of the operation ,
=> Name of the scheduling server)

=> System_Timed_Activity ,
=> Name of the Event ,

Description of the MAST Model- 18/12/G0Page 27

Output_Event
~! Activity Operation
| Activity _Server

Event Handler = (
Type
Output_Event
Input_Events_List

Event Handler = (
Type
Output_Event
Input_Events_List

Event Handler = (
Type
Delivery_Policy
Input_Event
Output_Events_List

Event Handler = (
Type
Request_Policy
Input_Event
Output_Events_List

Event Handler = (
Type
Input_Event
Output_Events_List

Event Handler = (
Type
Input_Event
Output_Event
Rate_Factor

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

=> Name of the Event ,
=> Name of the operation ,
=> Name of the scheduling server)

=> Concentrator ,
=> Name of the Event ,
=> (
Name of the Event 1 ,
Name of the Event 2 ,

)

=> Barrier

=> Name of the Event ,
=> (

Name of the Event 1 ,
Name of the Event 2 ,

"))

=> Delivery_Server ,
=> Scan|Random,
=> Name of the Event ,
=> (
Name of the Event 1 ,
Name of the Event 2 ,

"))

=> Query_Server ,

=> Priority|FIFO|LIFO|Scan ,
=> Name of the Event ,
=> (

Name of the Event 1 ,

Name of the Event 2 ,

"))

=> Multicast

=> Name of the Event,

=> (

Name of the Event 1 ,
Name of the Event 2 ,

"))

=> Rate Divisor ,
=> Name of the Event ,
=> Name of the Event ,
=> Factor of Rate Divisor)

Description of the MAST Model- 18/12/G0Page 28

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Event Handler = (

Type => Delay ,

Input_Event => Name of the Event ,
Output_Event => Name of the Event ,
Delay_Max_Interval => Maximum delay interval ,
Delay_Min_Interval => Minimum delay interval)

Event Handler = (

Type => Offset ,

Input_Event => Name of the Event ,
Output_Event => Name of the Event ,
Delay_Max_Interval => Maximum delay interval ,
Delay_Min_Interval => Minimum delay interval ,

Referenced_Event => Name of referenced event)

8. Results File Format

-- Corresponding result for each transaction

Transaction (

Worst_Local_Response_Time
Avg_Local_Response_Time
Best_Local_Response_Time

=> WLRT of the Operation
=> ALRT of the Operation
=> BLRT of the Operation

Name => Name of the transaction ,
Results =>(
Result 1,
Result2
-));
-- Result
Result =(
Type => Timing_Result
Event_Name => Name of Event

Blocking_Time => Blocking time of the Operation
Num_Of_Suspensions => Maximum number of suspensions ,
Worst_Global_Response_Times => (

Avg_Global_Response_Time

Best_Global_Response_Times

Jitters

S

Global _Response_Time 1
Global_Response_Time 2
)

= (
Global_Response_Time 1
Global_Response_Time 2

)

=> (
Global_Response_Time 1
Global _Response_Time 2
)

=> (
Global_Response_Time 1
Global_Response_Time 2

Description of the MAST Model- 18/12/G0Page 29

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

),

Local_Miss_Ratios =>(
Miss Ratio1l
Miss_Ratio 2
)
Global_Miss_Ratios =>(

Global_Miss_Ratio 1 ,
Global Miss Ratio 2 ,

D)

-- Global_Response_Time

Global _Response_Time =(
Referenced_Event => Name of referenced event ,
Time_Value => Response time),

-- Miss_Ratio

Miss_Ratio = (
Deadline => Deadline |,
Ratio => Percentage),

-- Global_Miss_Ratio

Global_Miss_Ratio =(
Referenced_Event => Name of referenced event ,
Miss_Ratios =>(
Miss Ratio1l
Miss_Ratio 2,

0)

9. Example of a Single-Processor System: CASEVA

CASEVA is a robot designed for automatic welding of junctions between pieces that don’t
have axial symmetry. It has an embedded controller that uses a VME-bus based computer (an
HP 743rt) running HP-RT as its real-time operating system. The application software is
concurrent, and written in Ada. The basic characteristics of its tasks are shown in Figure 5.

Communication and synchronization between the different tasks is asynchronous, and based
on shared resources implemented using Ada’s protected objects. In this document we present a
simplified view of the shared resources and associated protected operations, to make the
description shorter. The following table shows the characteristics of the simplified protected
objects and operations.

WCET
Shared Resource Operation (us) Used by
Servo_Data Read New_Point 87 SC
New_Point 54 TP
Arm Read_Axis_Positions 135 SC,R
Control_Servos 99 SC

Description of the MAST Model- 18/12/60Page 30

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

!
O\
“ SC: Servo_ TP: Trajectory_ LM: Light_
Control Planning Manager
T=5000ps T=50000ps T=100000ps
C=1080ps C=9045ps C=219ps
Prio=415 Prio=412 Prio=410
R: Reporter ML: Message_
Logger
T=1000000ps T=-
C=72952us C=46820us
Prio=80 Prio=70

Figure 5. Basic Characteristics of the tasks of the CASEVA controller

WCET
Shared Resource Operation (us) Used by
Lights Turn_On 74 TP
Turn_Off 71 TP
Time_Lights 119 LM
Alarms Read_All 78 SC, TP, R
Set 59 SC, TP
Error_Log Notify _Error 85 TP
Get_Error_From_Queug 79 ML

The MAST description of this system is shown next:

-- Processing Resources

Processing_Resource (
Type => Fixed_Priority_Processor,
Name => Processor_1,
Worst_Context_Switch => 102.5,
System_Timer =>
(Type => Alarm_Clock,
Worst_Overhead=> 50));

-- Scheduling Servers

Scheduling_Server (

Type => Fixed_Priority,
Name => Servo_Control,
Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority =>415),
Server_Processing_Resource => Processor_1);

Scheduling_Server (

Description of the MAST Model- 18/12/G0Page 31

=> Fixed_Priority,
=> Trajectory_Planning,

=> Fixed_Priority_policy,

Type
c[7> ““ Name
i Server_Sched_Parameters => (
Type
The_Priority

=> 412),

Server_Processing_Resource=> Processor_1);

Scheduling_Server (

=> Fixed_Priority,
=> Light_Manager,

=> Fixed_Priority_policy,

Type
Name
Server_Sched_Parameters=> (
Type
The_Priority

=> 410),

Server_Processing_Resource=> Processor_1);

Scheduling_Server (

=> Fixed_Priority,
=> Reporter,

=> Fixed_Priority_policy,

Type
Name
Server_Sched_Parameters=> (
Type
The_Priority

=> 80),

Server_Processing_Resource=> Processor_1);

Scheduling_Server (

=> Fixed_Priority,
=> Message_Logger,

=> Fixed_Priority_policy,

Type
Name
Server_Sched_Parameters=> (
Type
The_Priority

=>70),

Server_Processing_Resource=> Processor_1);

-- Resources

Shared_Resource (

Type =>Immediate_Ceiling_Resource,

Name

Shared_Resource (

=> Servo_Data);

Type =>Immediate_Ceiling_Resource,

Name => Arm);

Shared_Resource (

Type =>Immediate_Ceiling_Resource,

Name => Lights);

Shared_Resource (

Type =>Immediate_Ceiling_Resource,

Name => Alarms);

Shared_Resource (

Type =>Immediate_Ceiling_Resource,

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 32

Name => Error_Log);

-- Operations

-- Critical Sections

Operation (
Type => Simple,
Name => Read_New_Point,

Worst_Case_ Execution_Time => 87,
Shared_Resources_List=> (Servo_Data));

Operation (
Type => Simple,
Name => New_Point,

Worst_Case_ Execution_Time => 54,
Shared_Resources_List=> (Servo_Data));

Operation (
Type => Simple,
Name => Read_Axis_Positions,

Worst_Case Execution_Time => 135,
Shared_Resources_List=> (Arm));

Operation (
Type => Simple,
Name => Control_Servos,

Worst_Case_ Execution_Time => 99,
Shared_Resources_List=> (Arm));

Operation (
Type => Simple,
Name =>Turn_On,

Worst_Case_ Execution_Time => 74,
Shared_Resources_List=> (Lights));

Operation (
Type => Simple,
Name => Turn_Off,

Worst_Case_Execution_Time => 71,
Shared_Resources_List=> (Lights));

Operation (
Type => Simple,
Name => Time_Lights,

Worst_Case_Execution_Time => 119,
Shared_Resources_List=> (Lights));

Operation (
Type => Simple,

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 33

Grupo de Computadores y Tiempo Real
' Universidad de Cantabria

Name => Read_All_Alarms,
v b Worst_Case_Execution_Time => 78,
Shared_Resources_List=> (Alarms));

Operation (
Type => Simple,
Name => Set,

Worst_Case_ Execution_Time => 59,
Shared_Resources_List=> (Alarms));

Operation (
Type => Simple,
Name => Notify_Error,

Worst_Case_ Execution_Time => 85,
Shared_Resources_List=> (Error_Loqg));

Operation (
Type => Simple,
Name => Get_Error_From_Queue,

Worst_Case_ Execution_Time => 79,
Shared_Resources_List=> (Error_Loqg));

-- Enclosing operations

Operation (
Type => Enclosing,
Name => Servo_Control,
Worst_Case_Execution_Time => 1080,
Composite_Operation_List =>
(Read_New_Point,Read_Axis_Positions,Control_Servos,
Read_All_Alarms,Set));

Operation (
Type => Enclosing,
Name => Trajectory_Planning,
Worst_Case_Execution_Time => 9045,
Composite_Operation_List =>
(New_Point, Turn_On, Turn_Off,
Read_All_Alarms,Set,Notify _Error));

Operation (
Type => Enclosing,
Name => Light Manager,
Worst_Case Execution_Time => 119,
Composite_Operation_List =>
(Time_Lights));

Operation (
Type => Enclosing,
Name => Reporter,
Worst_Case_Execution_Time => 72952,

Description of the MAST Model- 18/12/0(Page 34

Composite_Operation_List =>

c[7> ““ (Read_Axis_Positions,Read_All_Alarms));
1
Operation (
Type => Enclosing,
Name => Message_Logger,

Worst_Case_Execution_Time => 46820,
Composite_Operation_List =>
(Get_Error_From_Queue));

-- Transactions

Transaction (

Type => Regular,
Name => Servo_Control,
External_Events => (
(Type => Periodic,
Name =>El1,

Period => 5000)),
Internal_Events => (

(Type =>regular,
name => 01,
Timing_Requirements => (
Type =>Hard_Global_Deadline,

Deadline => 5000,
Referenced_Event => E1))),
Event_Handlers => (
(Type => System_Timed_Activity,
Input_Event =>E1,
Output_Event => O1,
Activity_Operation => Servo_Control,
Activity Server=> Servo_Control)));

Transaction (

Type => Regular,
Name => Trajectory_Planning,
External_Events => (
(Type => Periodic,
Name =>E2,

Period => 50000)),
Internal_Events => (

(Type =>regular,
name => 02,
Timing_Requirements => (
Type =>Hard_Global Deadline,

Deadline => 50000,
Referenced_Event => E2))),
Event_Handlers => (
(Type
Input_Event

=> System_Timed_Activity,
= E2,

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 35

Output_Event => 02,
' Activity_Operation => Trajectory_Planning,
Activity_Server=> Trajectory_Planning)));

Transaction (
Type => Regular,
Name => Light_Manager,
External_Events => (
(Type => Periodic,
Name =>ES3,
Period => 100000)),
Internal_Events => (
(Type =>regular,

name => 03,
Timing_Requirements => (
Type =>Hard_Global_Deadline,

Deadline => 100000,
referenced_event => E3))),
Event_Handlers => (
(Type => System_Timed_Activity,
Input_Event =>E3,
Output_Event => O3,
Activity Operation => Light_Manager,
Activity_Server=> Light_Manager)));

Transaction (
Type => Regular,
Name => Reporter,
External_Events => (
(Type => Periodic,
Name =>E4,
Period => 1000000)),
Internal_Events => (
(Type =>regular,

name => 04,
Timing_Requirements => (
Type =>Hard_Global Deadline,

Deadline => 1000000,
referenced_event => E4))),
Event_Handlers => (
(Type => System_Timed_Activity,
Input_Event => E4,
Output_Event => O4,
Activity_Operation => Reporter,
Activity Server=> Reporter)));

Transaction (
Type => Regular,
Name => Message_Logger,
External_Events => (

(Type => Unbounded,

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 36

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Name => E5,
Avg_Interarrival=> 1000000)),
Internal_Events => (
(Type =>regular,
name => 05)),
Event_Handlers => (
(Type => Activity,
Input_Event =>E5,
Output_Event => O5,
Activity_Operation => Message_Logger,
Activity_Server=> Message_Logger)));

10. Example of Linear_Transactions: RMT

The following example will show the aspect of the MAST file format that has been chosen to
represent the timing behavior of real-time applications. The example is a simplification of the
control system of a teleoperated robot. This is a distributed system with two specialized nodes:
a local robot controller, and a remote teleoperation station, where the operator manipulates the
controls, and gets information about the system status. Figure 6 shows a diagram of the
software architecture. The system has three transactions; one of them, the main control loop,
implies execution in different processing resources, and has a global end-to-end deadline.
Communication is through an ethernet network used in master-slave mode to achieve hard real-
time behavior.

Teleoperation Station Ethernet Network Local Controller

50ms (X

Trajectory Command Command Sms

GUI

Reporter

1sec Planner L Message - Manager
1

\

Servo
Control

Status
Message

Data
Sender

Figure 6. Architecture of the teleoperated robot controller

In the MAST description we can see that we declare, in this order, the processing resources, the
scheduling servers, the shared resources, the operations, and finally, the transactions. The
timing requirements are embedded in the events described in the transactions. The timers (and
also the network drivers) are embedded in the description of the processing resources. The
scheduling parameters are embedded in the description of the scheduling servers. Finally, the
events and event handlers are embedded in the description of the transactions. The description
is shown next:

-- Processing Resources

Processing_Resource (

Type => Fixed_Priority_Processor,
Name => Teleoperation_Station,
Worst_Context_Switch => 102.5,

System_Timer =

Description of the MAST Model- 18/12/G0Page 37

(Type => Alarm_Clock,
~! Worst_Overhead=> 50));

Processing_Resource (

Type => Fixed_Priority_Processor,
Name => Local_Controller,
Worst_Context_Switch => 15,

System_Timer =

(Type => Alarm_Clock,
Worst_Overhead=> 10));

Processing_Resource (
Type
Name
Transmission

=> Fixed_Priority_Network,
=> Ethernet,
=> Half_Duplex);

-- Scheduling Servers

Scheduling_Server (

Type => Fixed_Priority,
Name => Servo_Control,
Server_Sched_Parameters=> (
Type => Fixed_Priority_policy,
The_Priority =>415),

Server_Processing_Resource=> Local_Controller);

Scheduling_Server (

Type => Fixed_Priority,
Name => Command_Manager,
Server_Sched_Parameters=> (
Type => Fixed_Priority_policy,
The_Priority =>412),

Server_Processing_Resource=> Local_Controller);

Scheduling_Server (

Type => Fixed_Priority,
Name => Data_Sender,
Server_Sched_Parameters=> (
Type => Fixed_Priority_policy,
The_Priority =>410),

Server_Processing_Resource=> Local_Controller);

Scheduling_Server (

Type => Fixed_Priority,
Name => Trajectory_Planner,
Server_Sched Parameters=> (
Type => Fixed_Priority_policy,
The_Priority => 80),

Server_Processing_Resource=> Teleoperation_Station);

Scheduling_Server (

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 38

Type => Fixed_Priority,
Name => Reporter,
Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority =>79),

Server_Processing_Resource=> Teleoperation_Station);

Scheduling_Server (

Type => Fixed_Priority,
Name => GUI,
Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority =>60),

Server_Processing_Resource=> Teleoperation_Station);

-- Message scheduler

Scheduling_Server (

Type => Fixed_Priority,
Name => Message_Scheduler,
Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority =>1),
Server_Processing_Resource=> Ethernet);

-- Resources
Shared_Resource (
Type =>Immediate_Ceiling_Resource,
Name => Status);
Shared_Resource (
Type =>Immediate_Ceiling_Resource,
Name => Commands);
Shared_Resource (
Type =>Immediate_Ceiling_Resource,
Name => Servo_Data);

-- Operations

-- Critical Sections

Operation (
Type => Simple,
Name => Read_Status,

Worst_Case_ Execution_Time => 87,
Shared_Resources_List=> (Status));

Operation (
Type => Simple,

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 39

Grupo de Computadores y Tiempo Real
' Universidad de Cantabria

Name => Write_Status,
v b Worst_Case_ Execution_Time => 54,
Shared_Resources_List=> (Status));

Operation (
Type => Simple,
Name => Set_Command,

Worst_Case Execution_Time => 135,
Shared_Resources_List=> (Commands));

Operation (
Type => Simple,
Name => Get_Command,

Worst_Case_ Execution_Time => 99,
Shared_Resources_List=> (Commands));

Operation (
Type => Simple,
Name => Read_Servos,

Worst_Case_ Execution_Time => 74,
Shared_Resources_List=> (Servo_Data));

Operation (
Type => Simple,
Name => Write_Servos,

Worst_Case_ Execution_Time => 71,
Shared_Resources_List=> (Servo_Data));

-- Enclosing operations

Operation (
Type => Enclosing,
Name =>Command_Manager,
Worst_Case_Execution_Time => 9045,
Composite_Operation_List =>
(Write_Servos));

Operation (
Type => Enclosing,
Name => Data_Sender,
Worst_Case_ Execution_Time => 1220,
Composite_Operation_List =>
(Read_Servos));

Operation (
Type => Enclosing,
Name => Servo_Control,
Worst_Case_Execution_Time => 1019,
Composite_Operation_List =>
(Read_Servos,Write_Servos));

Description of the MAST Model- 18/12/60Page 40

Grupo de Computadores y Tiempo Real
' Universidad de Cantabria

Operation (
v b Type =>Enclosing,

i Name => Trajectory_Planner,
Worst_Case_Execution_Time => 7952,
Composite_Operation_List =>

(Get_Command));

Operation (
Type => Enclosing,
Name => Reporter,
Worst_Case Execution_Time => 2086,
Composite_Operation_List =>
(Write_Status));

Operation (
Type => Enclosing,
Name => GUI,
Worst_Case_Execution_Time => 146820,
Composite_Operation_List =>
(Read_Status,Set_ Command));

-- Network operations

Operation (
Type => Simple,
Name => Command_Message,
Worst_Case_Execution_Time => 4850);

Operation (
Type => Simple,
Name => Status_Message,
Worst_Case_Execution_Time => 5080);

-- Transactions

Transaction (
Type => Regular,

Name => Servo_Control,
External_Events => (
(Type => Periodic,
Name => E1,

Period => 5000)),
Internal_Events => (
(Type =>regular,
name => 01,
Timing_Requirements => (

Type =>Hard_Global Deadline,
Deadline => 5000,
referenced_event => E1))),

Description of the MAST Model- 18/12/G0Page 41

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Event_Handlers => (
(Type => System_Timed_Activity,
Input_Event =>E1,
Output_Event => O1,
Activity Operation => Servo_Control,
Activity_Server=> Servo_Control)));

Transaction (
Type => Regular,
Name => Main_Control_Loop,
External_Events => (
(Type => Periodic,
Name =>E2,
Period => 50000)),
Internal_Events => (
(Type =>regular,
name => 02),
(Type =>regular,
name => 03),
(Type =>regular,
name => 04),
(Type =>regular,
name => 05),
(Type =>regular,
name => 06),
(Type =>regular,
name => 07,
Timing_Requirements => (
Type =>Hard_Global_Deadline,
Deadline => 50000,
referenced_event => E2))),
Event_Handlers => (
(Type => System_Timed_Activity,
Input_Event =>E2,
Output_Event => 02,
Activity Operation => Trajectory_Planner,
Activity Server=> Trajectory_Planner),
(Type => Activity,
Input_Event => 02,
Output_Event => O3,
Activity_Operation => Command_Message,
Activity Server=> Message_Scheduler),
(Type => Activity,
Input_Event => O3,
Output_Event => O4,
Activity Operation => Command_Manager,
Activity Server=> Command_Manager),
(Type => Activity,
Input_Event => 04,
Output_Event => O5,
Activity Operation => Data_Sender,

Description of the MAST Model- 18/12/G0Page 42

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Activity _Server=> Data_Sender),
(Type => Activity,
Input_Event => 05,
Output_Event => O6,
Activity_Operation => Status_Message,
Activity _Server=> Message_Scheduler),
(Type => Activity,
Input_Event => OB6,
Output_Event => O7,
Activity_Operation => Reporter,
Activity_Server=> Reporter)));

Transaction (
Type => Regular,
Name => GUI,
External_Events => (
(Type => Periodic,
Name =>ES3,
Period => 1000000)),
Internal_Events => (
(Type =>regular,
name => 08,
Timing_Requirements => (
Type =>Hard_Global_Deadline,
Deadline => 1000000,
referenced_event => E3))),
Event_Handlers => (
(Type => System_Timed_Activity,
Input_Event => ES3,
Output_Event => O8,
Activity Operation => GUI,
Activity_Server=> GUI)));

Description of the MAST Model- 18/12/G0Page 43

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

11. Example of Multiple_Event_Transactions

Example of steel bars inspection:

Ultrasonic

Scanner Robot

Controller

Image l
Processaf Computer —

/

Software Architecture for this example:

Processor 1 Processor 2

o) 4

Image 1
—p[Acq. |

Image 2
——p»|Acq. 2

. >
Ultrasonic /4

Sensor
—>Acq. 3 @ Pro. 2

Processor 3

Act. 1

Act. 2

ocessor 4

Act. 3

Act. 4

|:| Task

Q Message Queue Network

Description of the MAST Model- 18/12/0(Page 44

h 4

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Multiple event synchronization model for this example:

il
_> tl —= Mp
/ k
+ tg = My +\
lg
e
_> t7 — Mg
Mo —» '[13
= /
. tg — M1g—> tll . \
m14—> t15
Graph for the example:
AO1 AO7
EIM1 AO3 ACT1 |
—p| ACQLl—p M1

AR1 AO5 AO6 AR2/4
1 N —pPROLl—p{M3 —p{O1 N

+
AO2 AOS8
EIM2 %4 AR3\\ ACT2 —p

— | ACQ2—3= M2

AO12 AO14

——» ACT3 |—»
AR4 MS
EUS AO9 AO10 AO11

— »|ACQ3| /M4 | g/ PRO2|—p|ON_N/ «

\ AO13 AQO15
AR5 M6 +——m|ACT4 —B

Input File for the Multiple-Event Example

-- Real-Time System Model for the Example

-- All the timing requirements are global deadlines
-- 5 Processing resources

-- 0 Data resources

-- 15 Operations

-- 15 Scheduling Servers

-- 2 Transactions

-- 1-->2 External Events

-- 11 Internal_Events

Description of the MAST Model- 18/12/G0Page 45

-- 10 Event Handlers (8 Activities, 2 others)

-- 2 -->1 External Event

-- 9 Internal Events
-- 8 Event Handlers (7 Activities, 1 other)

-- Resources

Processing_Resource (
Type
Name
Worst_Context_Switch
Avg_Context_Switch
Best_Context_Switch

Processing_Resource (
Type
Name
Worst_Context_Switch
Avg_Context_Switch
Best_Context_Switch

Processing_Resource (
Type
Name
Worst_Context_Switch
Avg_Context_Switch
Best_Context_Switch

Processing_Resource (
Type
Name
Worst_Context_Switch
Avg_Context_Switch
Best_Context_Switch

Processing_Resource (

=> Fixed_Priority_Processor,
=> Processor_1,
=> 50,
=> 15,
=> 10),

=> Fixed_Priority_Processor,
=> Processor_2,
=> 50,
=> 150,
=>10);

=> Fixed_Priority_Processor,
=> Processor_3,
=> 50,
=> 150,
=> 10),

=> Fixed_Priority_Processor,
=> Processor_4,
=> 50,
=> 150,
=>10);

Grupo de Computadores y Tiempo Real

Universidad de Cantabria

Type
Name
Max_Packet_Transmission_Time

-- Operations

Operation (

Type

Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (

Type

=> Fixed_Priority_Network,
=> Network,
=>100);

=> Simple,
=> ACQ1,

=> Simple,

Description of the MAST Model- 18/12/G0Page 46

Name

Worst_Case Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (

Type

Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best Case_ Execution_Time

Operation (

Type

Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (

Type

Name

Worst_Case Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (

Type

Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best Case_ Execution_Time

Operation (

Type

Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (

Type

Name
Worst_Case_Execution_Time
Avg _Case_Execution_Time
Best_Case_Execution_Time

Operation (

Type
Name
Worst_Case_Execution_Time

Description of the MAST Model-

=> ACQ2,
=> 50,
=> 50,
=> 50);

=> Simple,

=> ACQ3,
=> 820,
=> 820,
=> 820);

=> Simple,

=> PRO1,
=> 100,
=> 100,
=>100);

=> Simple,

=> PRO2,
=> 750,
=> 750,
=> 750);

=> Simple,

=> ACT],
=>100,
=>100,
=>100);

=> Simple,

=> ACT2,
=> 100,
=> 100,
=>100);

=> Simple,

=> ACT3,
=> 725,
=> 725,
=> 725),

=> Simple,
=> ACT4,
=> 740,

Grupo de Computadores y Tiempo Real

18/12/0Page 47

Universidad de Cantabria

Avg_Case_Execution_Time
Best Case_ Execution_Time

Operation (
Type
Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (
Type
Name
Worst_Case Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (
Type
Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best Case_ Execution_Time

Operation (
Type
Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (
Type
Name
Worst_Case_Execution_Time
Avg_Case_Execution_Time
Best_Case_Execution_Time

Operation (
Type
Name
Worst_Case_Execution_Time
Avg _Case_Execution_Time
Best_Case_Execution_Time

-- Scheduling Servers

Scheduling_Server (
Type
Name
Server_Sched_Parameters

Grupo de Computadores y Tiempo Real

=> 740,
=> 740);

=> Simple,
=> M1,
=> 100,
=> 100,
=> 100);

=> Simple,
=> M2,
=> 100,
=> 100,
=>100);

=> Simple,
=> M3,
=> 50,
=> 50,
=>50);

=> Simple,
=> M4,
=> 150,
=> 150,
=> 150);

=> Simple,
=> M5,
=> 230,
=> 230,
=>230);

=> Simple,
=> M6,
=> 250,
=> 250,
=> 250);

=> Fixed_Priority,
=> SACQ1,
=> (

Description of the MAST Model- 18/12/G0Page 48

Universidad de Cantabria

Type => Fixed_Priority_Policy,
v b The_Priority =>1),
Server_Processing_Resource => Processor_1);

Scheduling_Server (

Type => Fixed_Priority,
Name => SACQ2,
Server_Sched_ Parameters = (
Type => Fixed_Priority_Policy,
The_Priority =>2),

Server_Processing_Resource => Processor_1);

Scheduling_Server (

Type => Fixed_Priority,
Name => SACQ3,
Server_Sched_Parameters =>(
Type => Fixed_Priority_Policy,
The_Priority => 3),

Server_Processing_Resource => Processor_1);

Scheduling_Server (

Type => Fixed_Priority,
Name => SPRO1,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 1),

Server_Processing_Resource => Processor_2);

Scheduling_Server (

Type => Fixed_Priority,
Name => SPRO2,
Server_Sched Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 2),

Server_Processing_Resource => Processor_2);

Scheduling_Server (

Type => Fixed_Priority,
Name => SACT1,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 1),

Server_Processing_Resource => Processor_3);

Scheduling_Server (

Type => Fixed_Priority,
Name => SACT2,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 1),

Server_Processing_Resource => Processor_4);

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/G0Page 49

5 ““ Scheduling_Server (
i Type => Fixed_Priority,
Name => SACTS3,
Server_Sched_ Parameters = (
Type => Fixed_Priority_Policy,
The_Priority =>2),

Server_Processing_Resource => Processor_4);

Scheduling_Server (

Type => Fixed_Priority,
Name => SACT4,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority =>2),

Server_Processing_Resource => Processor_3);

Scheduling_Server (

Type => Fixed_Priority,
Name => SM1,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 1),
Server_Processing_Resource => Network);

Scheduling_Server (

Type => Fixed_Priority,
Name => SM2,
Server_Sched Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 3),
Server_Processing_Resource => Network);

Scheduling_Server (

Type => Fixed_Priority,
Name => SM3,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 2),
Server_Processing_Resource => Network);

Scheduling_Server (

Type => Fixed_Priority,
Name => SM4,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 4),
Server_Processing_Resource => Network);

Scheduling_Server (

Type => Fixed_Priority,

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/60Page 50

Name => SM5,
c[7> ““ Server_Sched Parameters = (
i Type => Fixed_Priority_Policy,
The_Priority =>15),

Server_Processing_Resource

Scheduling_Server (

=> Network);

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Type => Fixed_Priority,
Name => SM6,
Server_Sched_Parameters = (
Type => Fixed_Priority_Policy,
The_Priority => 6),
Server_Processing_Resource => Network);
-- Transactions
Transaction (
Type => Regular,
Name => Transl,
External_Events => (
(Type => Periodic,
Name => EIM1,
Period => 1000,
Max_Jitter => 0,
Phase =>0),
(Type => Periodic,
Name => EIM2,
Period => 1000,
Max_Jitter =>0,
Phase =>0)),
Internal_Events => (
(Type =>regular,
name =>A01),
(Type =>regular,
name =>A02),
(Type =>regular,
name =>A03),
(Type =>regular,
name =>A04),
(Type =>regular,
name => A05),
(Type =>regular,
name => A06),
(Type => regular,
name => AO7,
Timing_Requirements =>(
Type => Composite,

Requirements_List

=> (
(Type

Deadline => 1000,

referenced_event => EIM1),

=> Hard_Global_Deadline,

Description of the MAST Model- 18/12/G0Page 51

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

(Type => Hard_Global_Deadline,
Deadline => 1000,
referenced_event => EIM2)))),
(Type => regular,
name => AQS,
Timing_Requirements => (
Type => Composite,
Requirements_List = (
(Type => Hard_Global_Deadline,
Deadline => 1000,
referenced_event => EIM1),
(Type => Hard_Global_Deadline,
Deadline => 1000,

(Type =>regular,
name =>AR1),
(Type =>regular,
name =>AR2),
(Type =>regular,
name => AR3)),

Event_Handlers => (

referenced_event => EIM2)))),

(Type => Activity,
Input_Event => EIM1,
Output_Event => A01,
Activity_Operation => ACQ1,
Activity_Server => SACQ1),
(Type => Activity,
Input_Event =>EIM2,
Output_Event => A02,
Activity Operation => ACQ?2,
Activity Server => SACQ?2),
(Type => Activity,
Input_Event => A01,
Output_Event => A03,
Activity_Operation => M1,

Activity Server => SM1),
(Type => Activity,
Input_Event => A02,
Output_Event => A04,
Activity Operation => M2,
Activity_Server => SM2),
(Type => Activity,
Input_Event => AR1,
Output_Event => AO5,
Activity Operation =>PRO1,
Activity Server => SPRO1),
(Type => Activity,
Input_Event => A05,
Output_Event => AOG6,
Activity_Operation => M3,

Activity Server => SM3),

Description of the MAST Model-

18/12/0Page 52

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

(Type => Activity,
Input_Event => AR2,

Output_Event => AO7,
Activity_Operation => ACT1,
Activity_Server => SACT1),

(Type => Activity,
Input_Event => AR3,

Output_Event => AQOS,
Activity_Operation =>ACT2,
Activity_Server => SACT2),

(Type => Concentrator,
Output_Event => AR1,
Input_Events_List =>(

AO3,
AO4)),

(Type => Delivery_Server,
Input_Event => AOG,
Output_Events_List => (

AR2,
ARR))));
Transaction (
Type => Regular,
Name =>Trans2,
External_Events =>(

(Type => Periodic,
Name => EUS,
Period => 1000,
Max_Jitter =>0,

Phase =>0)),
Internal_Events => (

(Type =>regular,
name =>A09),

(Type =>regular,
name => A010),

(Type =>regular,
name =>A011),

(Type =>regular,
name =>A012),

(Type =>regular,
name =>A013),

(Type => regular,
name => A014,
Timing_Requirements =>(

Type => Hard_Global_Deadline,
Deadline => 10000,
referenced_event => EUS)),

(Type => regular,
name => AO15,
Timing_Requirements =>(

Type

=> Hard_Global_Deadline,

Description of the MAST Model- 18/12/G0Page 53

Deadline

=> 10000,

referenced_event => EUS)),

(Type =>regular,
name => AR4),
(Type =>regular,
name => ARb5)),
Event_Handlers => (

(Type

Input_Event
Output_Event
Activity Operation
Activity_Server
(Type

Input_Event
Output_Event
Activity_Operation
Activity_Server
(Type

Input_Event
Output_Event
Activity_Operation
Activity_Server
(Type
Input_Event
Output_Event
Activity_Operation
Activity Server
(Type
Input_Event
Output_Event
Activity Operation
Activity_Server
(Type
Input_Event
Output_Event
Activity Operation
Activity Server
(Type
Input_Event
Output_Event
Activity_Operation
Activity Server
(Type
Input_Event

Output_Events_List

=> Activity,
=> EUS,
=> A09,
=> ACQ3,
=> SACQ?3),
=> Activity,
=> A09,
=> A010,
=> M4,
=> SM4),
=> Activity,
=> A0O10,
=> AO11,
=> PRO2,
=> SPRO2),
=> Activity,
=> AR4,
=> AOlZ,
=> M5,
=> SMS),
=> Activity,
=> AR5,
=> A013,
=> M6,
=> SM6),
=> Activity,
=> A012,
=> A014,
=> ACT3,
=> SACT3),
=> Activity,
=> A013,
=> A015,
> ACTA4,
=> SACT4),

=> Multicast,

=> A011,
= (
ARA4,
ARD))));

Grupo de Computadores y Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 18/12/00Page 54

