Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Modeling and Analysis Suite for Real Time Applications
(MAST 1.2)

Description of the MAST Model

By: José Maria Drake drakej @unican.es
Michael Gonzadez Harbour mgh@unican.es
José Javier Gutiérrez gutierjj@unican.es
José Carlos Palencia palencij @unican.es

Copyright © 2000-2002 Universidad de Cantabria, SPAIN

1. Introduction

In this document we describe the basic characteristics of MAST, aModeling and Analysis
Suite for Real-Time Applications. MAST is still under development and tries to provide an
open source set of tools that enable engineers devel oping real-time applications to perform
schedulability analysis of their application.

The motivations for developing MAST are mainly that the schedulability analysis techniques
have evolved alot in the past decade, and in particular for fixed priority scheduled systems,
such as those built with commercial operating systems or commercial languages. Today a full
set of techniques exists for event-driven distributed real-time systems.

The new aspects that cannot be found in other tools that we know about are the following:

* A very rich moddl of thereal time systemis used. It is an event-driven model in which
complex dependence patterns among the different tasks can be established. For example,
tasks may be activated with the arrival of several events, or may generate several events
at their output. This makesit ideal for analyzing real-time systems that have been
designed using UML or similar design tools, which have event driven models of the
system.

» Thelatest offset-based analysistechniques are used to enhance the results of the analysis.
These techniques are much less pessimistic than previous schedulability analysis
techniques.

» Thetoolset will be open source and fully extensible. That means that other teams may
provide enhancements. Thefirst version is intended for fixed priority systems, but
dynamically scheduled systems may be added in the future.

2. Requirements

Develop amodel to describe event-driven real time systems, with the following characteristics:

* Open model, that can include new characteristics or viewpoints of the system

Description of the MAST Model- 31/10/02 - Page 1



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Should be able to handle most real-time systems built using commercia standard
operating systems and languages (i.e., POSIX and Ada). Thisimplies fixed priority
scheduled systems, but the system will be extended in the future to other scheduling
algorithms (EDF,...). Among fixed priorities, different scheduling strategies should be
allowed:

- preemptive and non preemptive
- interrupt service routines
- sporadic servers
- polling
Should be able to handle distributed systems.

Emphasisis on event-driven systems in which each task may conditionally generate
multiple events at its completion. A task may be activated by a conditional combination
of one or more events. The external events arriving at the system should be of different
kinds:

- periodic

- unbounded aperiodic

- gporadic

- bursty

- singular (arriving only once)

The system model should be rich enough to facilitate the independent description of
overhead parameters such as:

- Processor overheads.
- Network Overheads
- Network driver overheads

Timing requirements should be allowed to be both hard and soft. Deadlines as well as
maximum output jitter requirements should be allowed.

The tool provides the user with capabilities to automatically calculate the following
system parameters:

- optimum priorities
- possibility of deadlocks (not yet implemented)

- priority ceilings for shared resources

The model isincluded in atoolset, with the following elements:

The model is specified through an ASCII description that serves as the input of the
analysistools.

Graphical editors and other tools generate the system using this ASCII description

A parser converts the ASCII description of the system into an Ada data structure that is
used by the tools

Description of the MAST Model- 31/10/02 - Page 2



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

* A module exists to convert the Ada data structure back to the ASCII description

The MAST environment will integrate the following tools described in Figure 1:

Graphical Ar_1alys's_an d
Editor amulation
tools

Sandard UML Modd +
Real-TimeView

Figure 1. MAST toolset environment

The analysis tools perform different kinds of worst-case analysis to determine the
schedulability of the system. Blocking times relative to the use of shared resources are
calculated automatically.

The simulation tools will be able to simulate the behavior of the system to check soft timing
requirements

The graphical editor will allow the user describing the system and invoking the analysis tools.
A graphical display of resultswill be available.

Using a (non real-time) UML tooal, it is possible to describe areal-time view of the system by
adding the appropriate classes and objects that are necessary to have the real-time behavior of
the system described, and linking the system design with the real-time view as appropriate.
Then, an automatic tool extracts the real-time description of the system from the UML
description, generating the MAST description file. No special framework is needed with this
approach, but the designer must incorporate the real-time view into the UML description.

Figure 2 represents the MAST toolset. The capabilities of the different tools are represented in
the following table

Single- Multi- Simple Linear Multiple
Technique Processor Pr ocessor Transact. Transact. Event T.
Classic Rate Monotonic | |
Varying Priorities ] |
Holistic 4] M 4| |
Offset Based Unoptimized | | | ¥
Offset Based 4} 4} M M
Multiple Event | M ™ M M

Description of the MAST Model- 31/10/02 - Page 3



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Priority | Priority
Assignment > Ceélings
Redtrictions / Blocking
& Consistency [} Times
Checks
Worg-Case
Par ser RTA
Results ’

Description )W,
\ Discrete-Event
Print / Simulation
Newvw MAST Resaults
Description

MAST Sysem
Description

Figure2. MAST Analysistools

3. Real-Time System Model

A real-time system is modeled as a set of transactions. Each transaction is activated from one
or more external events, and represents a set of activities that are executed in the system.
Activities generate eventsthat are internal to the transaction, and that may in turn activate other
activities. Specia event handling structures exist in the model to handle eventsin special ways.
Internal events may have timing requirements associated with them.

Figure 3 shows an example of a system with one of its transactions highlighted. Transactions
are represented through graphs showing the event flow. This particular transaction is activated
by only one external event. After two activities have been executed, a multicast event handling
object is used to generate two events that activate the last two activitiesin parallel.

We call the “boxes’ that are included in the transaction Event Handlers. Aswe have
mentioned, there are event handlers that just manipulate events, like the Multicast event
handler in Figure 3. Another very important event handler is an Activity, which represents the
execution of an operation, i.e., a procedure or function in a processor, or a message
transmission in a network.

The elements that define an activity are described in Figure 4. We can see that each activity is
activated by oneinput event, and generates an output event when completed. If intermediate
events need to be generated, the activity would be partitioned into the appropriate parts. Each
activity executes an Operation, which represents a piece of code (to be executed on a
processor), or a message (to be sent through a network). An operation may have alist of
Shared Resourcesthat it needs to use in amutually exclusive way.

The activity is executed by a Scheduling Server, which represents a schedul able entity in the
Processing Resourceto which it isassigned (a processor or anetwork). For example, the model
for a scheduling server in aprocessor isatask. A task may be responsible of executing severd
activities (procedures). The scheduling server is assigned a Scheduling Parameters object that
contains the information on the scheduling policy and parameters used.

Description of the MAST Model- 31/10/02 - Page 4



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Transaction
—
Activity Activity Multicast /
External Internal
P EEEE—— |
Event Event |
|
Event Event : Event
Handler Handler | Handler —>
Timing
. Event
R rement
eau Handlers
Transaction
S— S— >
pit—
. S . L I o
Figure 3. Real-Time System composed of transactions
Shared Processing
Resour ces Resour ces
. - Operation Scheduling B
T = Server t————"
% v \
\ 7
\ P 4 A ~_
\ - S~ - | Scheduling
Parameters
Event Event
Activity )
[}
|
Event |
Handler v
—®  Event
Timing

-—~- % Reference

Requirement

Figure 4. Elementsthat define an activity

4. MAST Output Files

The MAST tools produce severa output files:

» Console output: Describes the work carried out by the tools, and any possible errors, in
free format. If the verbose option is set, the tools provide a more detailed output. The last
lineinthefile containsthe string “Fi nal anal ysi s status: code”, wherecode
isasingle word that is either “DONE”, or some error indication.

Description of the MAST Model- 31/10/02 - Page 5



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Source destination file: Describes the source of the MAST model of the analyzed system,
including any elementsintroduced by the analysistoolsinto the system such as priorities,
or priority ceilings. It follows the file format used for the MAST model. Thisfileisonly
produced if the corresponding option is set.

Resultsfile: Describes the results of the analysistools. If afilenameis not provided for
the results, they are written to the standard output, together with the Console Output. See
Section 9 for a description of its format.

5. Typedefinitions

The following types are used in the definitions of the components of the MAST File and the
MAST ResultsFile:

Identifier. String of characters following the rules described in the following section.

Priority. Positive integer of implementation-defined range, defining the scheduling
priority of tasks.

Interrupt_Priority. Positive integer of implementation defined range, defining the
scheduling priority of interrupt service routines.

Any Priority. Positive integer that is either in the Priority range or in the
Interrupt_Priority range.

Normalized Execution_Time. Represents the execution time of an operation, as executed
by anormalized processing resource of speed factor equal to one. It is obtained by
multiplying the real execution time by the processing resource’ s speed factor.

Time. Timeinterval in unspecified time units.

Absolute_Time. Absolute time measured from and arbitrary time origin, in unspecified
units.

Float. It represents any float type.
Positive. Integer positive number (excluding zero).
Natural . Integer number that is greater than or equal to zero.

Percentage. A floating point number representing a percentage, and followed by a* %6
character. In some cases (slacks) the notation “>=nun?4 may be used to indicate that the
actual result is greater than the specified number.

“Text” : String of arbitrary characters, excluding the double quote character, and
delimited within double quotes.

Date-Time: String representing a date and time (hours, minutes and seconds) in the
extended 1SO 8601 format with no time zone:
YYYY-MM-DDThh:mm:ss (e.g., 1997-07-16T19:20:30).

Pathname: String representing a pathname of afile.

Description of the MAST Model- 31/10/02 - Page 6



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

6. Writing the MAST File

The rules for writing the file with a real-time system according to the defined real-time system
model are the following:

Each object has the format:
object_name (arguments);

Most objects have a type and/or a name argument. In those cases, they are mandatory
arguments, and they have to be defined asthe first and second argument, respectively. All
other arguments can go in any order, and are mostly optional.

Blank spaces, tabs and new lines are ignored.

Identifiers or names follow the Adarules for composite identifiers. begin with aletter,
followed by letters, digits, underscores ("_") or periods (".").

Identifiers or names can be expressed with or without quotes. A quoted name can be the
same as one of the reserved words (appearing in bold face below).

Each name that is referenced must have been defined earlier in thefile.
Float types without fractional part can be expressed without the decimal point.

Commentsarelikein Ada: they begin with two dashes ("--"), anywherein aline, and end
at the end of the line.

The description is not case-sensitive.

7. Elements of the M AST model

In this section we review in detail the particular classes and attributes of the different elements
of the MAST model. The elements that we will review are:

Processing Resources

System Timers

Network Drivers

Scheduling parameters (policies, priorities...)
Scheduling Servers (tasks, processes, threads,...)
Shared resources (for mutually exclusive access)
Operations (procedures, functions, messages,...)
Events

Timing Requirements

Event Handlers

Transactions

Overall system model

Description of the MAST Model- 31/10/02 - Page 7



7.1 Processing Resour ces

Common attributes:

* Name. A string.

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

* Max Priority and Min Priority. They define the range of priorities valid for normal
operations on that processing resource. Specia operations (such asinterrupt service
routines in processors) may have other priority ranges.

»  Speed factor. All execution times will be expressed in normalized units. The real
execution timeis obtained by dividing the normalized execution time by the speed factor.

The default valueis 1.0.

Classes of Processing Resources:

» Fixed Priority Processor. It represents a processor scheduled with fixed priorities. It has

the following additional attributes:

- Max Interrupt priority and Min Interrupt priority. They define the range of
priorities valid for activities scheduled by an interrupt service routine.

- Context Snitch Overheads (Worst, Average, Best).
- ISR Switch Overheads (Worst, Average, Best).

- System Timer. A reference to the system timer used (see below), that influences the
overhead of the System Timed Activities.

Processi ng_Resource (
Type
Nanme
Max_Priority
Mn_Priority
Max_Interrupt_Priority
Mn_Interrupt_Priority
Wor st _Context _Switch
Avg Context _Switch
Best _Context _Switch
Worst | SR Switch
Avg | SR Switch
Best | SR Switch
System Ti ner
Speed_Fact or

Fi xed_Priority_ Processor
I dentifier,

Priority,

Priority,

Interrupt _Priority,
Interrupt _Priority,

Nor mal i zed_Execution_Ti
Nor mal i zed_Execution_Ti
Nor mal i zed_Executi on_Ti
Nor mal i zed_Execution_Ti
Nor mal i zed_Execution_Ti
Nor mal i zed_Executi on_Ti
System Ti ner,

Fl oat) ;

333333

» Fixed Priority Network. It represents a network that uses a priority based protocol for
sending messages. There are networks that support prioritiesin their standard protocols
(i.e., the CAN bus), and other networks that need an additional protocol that works on
top of the standard ones (i.e., serial lines, ethernet). It has the following additional

attributes:

- Packet Overhead (Worst, Average, Best). Thisisthe overhead associated to
sending each packet, because of the protocol messages that need to be sent before

or after each packet.

- Transmission kind: Smplex, Half Duplex, of Full Duplex

Description of the MAST Model- 31/10/02 - Page 8



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

- Max Blocking. The maximum blocking is caused by the non preemptability of
message packets. It usually has the same value as the maximum packet
transmission time, but its default value is zero, for the case in which the network
overhead is negligible.

- Max Packet Transmission Timeand Min Packet Transmission Time The maximum
timeisused in the calculation of the overhead model of the network; the overhead
Is the packet overhead times the number of packets, which is calculated as the
message transmission time divided by the maximum packet transmission time. The
Minimum time represents the shortest period of the overheads associated to the
transmission of each packet, and thus has a strong impact on the overhead caused
by the network driversin the processors using the network.

- List of Drivers. A list of references to network drivers, that contain the processor
overhead model associated with the transmission of messages through the network.
See the description of the drivers below.

Processi ng_Resource (

Type => Fixed Priority_Network,
Name => |dentifier,
Max_Priority => Priority,
Mn_Priority => Priority,
Packet Wbrst Over head => Normal i zed_Execution_Ti ne,
Packet Avg Over head => Normal i zed_Execution_Ti ne,
Packet Best_ Over head => Nornal i zed_Execution_Ti ne,
Transm ssi on => Sinpl ex | Hal f _Duplex | Full _Dupl ex,
Max_ Bl ocki ng => Tine,
Max_Packet Transmi ssion_Ti ne => Ti ne,
M n_Packet Transm ssion_Ti me => Ti ne,
Speed_Fact or => Fl oat,
Li st _of Drivers = (

Driver 1,

Driver 2,

o))

7.2 System Timers

They represent the different overhead model s associated with the way the system handles
timed events. There are two classes:

» Alarm Clock. This represents systemsin which timed events are activated by a hardware
timer interrupt. The timer is programmed always to generate the interrupt at the time of
the closest timed event. Consequently, each one can have its own interrupt. This
represents an overhead. The attributes are:

- Overhead (worst, average and best). Thisisthe overhead of the timer interrupt,
which is assumed to execute at the highest interrupt priority.

System Ti mer = (

Description of the MAST Model- 31/10/02 - Page 9



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Type => Alarm Cl ock

Wor st _Over head => Nornal i zed_Execution_Ti ne,
Avg_Over head => Normal i zed_Execution_Ti ne,
Best _Over head => Nornmal i zed_Execution_Ti ne,

Ticker. This represents a system that has a periodic ticker, i.e., a periodic interrupt that

arrives at the system. When this interrupt arrives, all timed events whose expiration time
has already passed, are activated. Other non timed events are handled at the time they are
generated. In thismodel, the overhead by the timer interrupt islocalized in asingle
periodic interrupt, but jitter isintroduced in all timed events, because the best resolution
istheticker period. The attributes are:

- Overhead (worst, average and best). Thisisthe overhead of the timer interrupt,
which is assumed to execute at the highest interrupt priority.

- Period. Period of the ticker interrupt.

System Ti mer = (

Type => Ti cker
Wor st _Over head => Ti ne,
Avg_Over head => Ti me,
Best _Over head => Ti ne,
Peri od => Ti ne)

7.3 Network Drivers

They represent operations executed in a processor as a consequence of the transmission or
reception of a message or a message packet through a network. We define two classes:

» Packet Driver. Represents a driver that is activated at each message transmission or
reception. Its attributes are:

- Packet server: The scheduling server that is executing the driver (which in turn has
areference to the processor, and the scheduling parameters)

- Packet Send Operation. The operation that is executed each time a packet is sent.

- Packet Receive Operation. The operation that is executed each time a packet is

received.
Driver = (
Type => Packet Driver,
Packet Server => Schedul i ng_Server,
Packet _Send_Operation => (Operation,
Packet Receive_Operation => (Operation)

» Character Packet Driver. It is aspeciaization of a packet driver in which thereisan
additional overhead associated to sending each character, as happensin some serial lines.
Its attributes are those of a packet driver plus the following:

- Character server: The scheduling server that is executing the part of the driver that
is executed for each character sent or received (which in turn has areference to the
processor, and the scheduling parameters)

Description of the MAST Model- 31/10/02 - Page 10



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

- Character Send Operation. The operation that is executed each time a character is
sent.

- Character Receive Operation. The operation that is executed each time a character
IS received.

- Character Transmission Time. Time of character transmission.

Driver = (
Type => Charact er _Packet Driver,
Packet Server => Schedul i ng_Server,
Packet _Send_Operation => (Operation,
Packet Receive_Operation => Qperation,
Char act er _Ser ver => Schedul i ng_Server,
Character_Send_Operation => (Qperation,
Character _Recei ve_Operation => (Operation,
Character_Transni ssi on_Ti ne => Ti me)

7.4 Scheduling parameters

They represent the fixed priority scheduling policies and their associated parameters. The
common attributes are:

* Priority. A natural number that represents the scheduling priority. It must be within the
valid ranges for the scheduling parameters object.

* Preassigned. If this parameter is set to the value “No”, the priority may be assigned by
one of the priority assignment tools. Otherwise, the priority is fixed and cannot be
changed by those tools. Its default value is“No” if no priority field appears, and “ Yes' if
apriority field appears.

The classes defined are;

» Non Preemptible Fixed Priority Scheduler. No additional attributes.

Fi xed_Priority Sched Paraneters = (

Type => Non_Preentibl e _FP_Policy,
The _Priority => Priority,
Pr eassi gned => Yes | No)

» Fixed Priority Scheduler. Represents afixed priority preemptive scheduler. No additional
attributes.

Fi xed_Priority_ Sched _Paraneters = (

Type => Fixed _Priority Policy,
The_Priority => Priority,
Preassi gned => Yes | No)

* Interrupt Fixed Priority Scheduler. Represents an interrupt service routine. No additional
attributes. The “Preassigned” field cannot be set to “No”, because interrupt priorities are
always preassigned.

Fi xed_Priority Sched_Paraneters = (
Type => I nterrupt_FP_Policy,

Description of the MAST Model- 31/10/02 - Page 11



The _Priority
Pr eassi gned

=>
=>

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Interrupt _Priority,
Yes | No)

» Polling Scheduler. Represents a periodic task that polls for the arrival of itsinput event.
Thus, execution of the event may be delayed until the next period. Its additional

attributes are:

- Polling Period. Period of the polling task
- Palling Overhead (Worst, Average, Best). Overhead of the polling task.

Fi xed_Priority_Sched_Paraneters

Type

The _Priority

Preassi gned

Pol I'i ng_Peri od

Pol I'i ng_Worst_Over head
Pol I i ng_Avg_Over head
Pol 1'i ng_Best _Over head

= (

Pol I'i ng_Pol i cy,

Priority,
Yes | No,
Ti me,

Nor mal i zed_Executi on_Ti ne,
Nor mal i zed_Executi on_Ti ne,
Nor mal i zed_Executi on_Ti ne)

» Sporadic Server Scheduler. Represents a task scheduled under the sporadic server
scheduling algorithm. Its additional attributes are:

is no available execution capacity

Background Priority. Represents the priority at which the task executes when there

- Initial Capacity. Itstheinitial value of the execution capacity.

- Replenishment Period. It isthe period after which aportion of consumed execution

capacity is replenished.

- Max Pending replenishments. It is the maximum number of simultaneously
pending replenishment operations.

Fi xed _Priority_ Sched Paraneters

Type

Norrmal _Priority

Pr eassi gned
Background_Priority
Initial _Capacity

Repl eni shnent _Peri od
Max_Pendi ng_Repl eni shnent s

= (

Spor adi c_Server _Pol i cy,
Priority,

Yes | No,

Priority,

Ti me,

Ti me,

Positive)

The scheduling parameters may also be overridden on the operations definition.

Overridden_Sched_Par ameters
Type
The _Priority

1]
~

Overridden_Sched_Par anmeters

Type
The _Priority

1
—~

Overridden_Fi xed_Priority,
Any Priority)

Overri dden_Per manent FP,
Any_Priority)

Description of the MAST Model- 31/10/02 - Page 12



7.5 Scheduling Servers

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

They represent schedulable entities in a processing resource. Thereis only one class defined,
named Regular. Its attributes are:

Name

» Scheduling Parameters. Reference to the scheduling parameters

Processing Resource. Reference to the scheduling resource

Schedul i ng_Server (

Type =>
Name =>
Server _Sched_Par anet ers =>
Server _Processi ng_Resource =>

7.6 Shared Resour ces

Fi xed_Priority,

Identifier,

Fi xed_Priority_ Sched_Paraneters,
Identifier);

They represent resources that are shared among different tasks, and that must be used in a
mutually exclusive way. Only protocols that avoid unbounded priority inversion are allowed.
There are two classes, depending on the protocol:

Immediate Ceiling Resource. Uses the immediate priority ceiling resource protocol. This
isequivalent to Ada's Priority Ceiling, or the POSIX priority protect protocol. Its

attributes are;

- Name

- Caeiling. Priority ceiling used for the resource. May be computed automatically by

the tool, upon request.

- Preassigned. If this parameter is set to the value “No”, the priority ceilling may be
assigned by the “ Calculate Ceilings’ tool. Otherwise, the priority ceiling is fixed
and cannot be changed by those tools. Its default valueis“No” if no ceiling field
appears, and “Yes' if acelling field appears.

Shar ed_Resource (

Type =>
Nanme =>
Ceiling =>
Pr eassi gned =>

| medi ate_Cei |l i ng_Resource,
Identifier,

Any Priority,

Yes | No);

Priority Inheritance Resource. Uses the basic priority inheritance protocol. Its attributes

are:

- Name.

Shar ed_Resource (

Type =>
Name =>

Priority _Inheritance_Resource,
Identifier);

Description of the MAST Model- 31/10/02 - Page 13



7.7 Operations

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

They represent a piece of code, or amessage. They all have the following common attributes:

Execution Time (Worst, Average and Best). In normalized units. For messages, this

represents the transmission time.

Overridden Scheduling Parameters. Represents apriority level above the normal priority
level that at which the operation would execute:

- For aregular overridden priority (Overridden_Fixed Priority), the change of
priority isin effect only until the operation is completed.

- For apermanent overridden priority (Overridden_Permanent_FP), the change of
priority isin effect until another permanent overridden priority, or until the end of
the segment of activities, i.e., a set of consecutive activities (consecutive in the
transaction graph) executed by the same scheduling server.

The following classes of operations are defined:

* Smple. Represents a ssimple piece of code or message. Additional attributes are:

- Shared resourcesto lock. List of references to the shared resources that must be

locked before executing the operation

- Shared resourcesto unlock. List of references to the shared resources that must be

unlocked after executing the operation

- Shared resourceslist.

Operation (

Type
Nane
Overri dden_Sched_Par anet ers =>
Wor st _Case_Execution_Ti ne
Avg_Case_Execution_Ti ne
Best _Case_Execution_Ti ne

Shar ed_Resources_To_Lock =>

Overridden_Sched_Par aneters
Wor st _Case_Execution_Tinme
Avg Case_Execution_Ti ne
Best _Case_ Execution_Tine

Shar ed_Resources_Li st =>

Si npl e,

Identifier,

Overri dden_Sched_Par anet ers,
Nor mal i zed_Executi on_Ti ne,
Nor mal i zed_Executi on_Ti ne,
Nor mal i zed_Executi on_Ti ne,

(

I dentifier,
Identifier,
),
Shared_Resources_To_Unl ock => (
Identifier,
Identifier,
)
Operation (
Type => Sinpl e,
Nane => |dentifier,

Overridden_Sched Par anmeters,
Nor mal i zed_Executi on_Ti ne,
Nor mal i zed_Executi on_Ti ne,
Nor mal i zed_Executi on_Ti ne,

(

I dentifier,

Description of the MAST Model- 31/10/02 - Page 14



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

I dentifier,

o))

» Composite. Represents an operation composed of an ordered sequence of other
operations, ssmple or composite. The execution time attribute of this class cannot be set,
because it is the sum of the execution times of the comprised operations. Its additional
attributes are:

- Operation List: List of referencesto other operations

Operation (
Type => Conposite,
Narme => |dentifier,
Overridden_Sched_Par aneters => Overridden_Sched_Paraneters,
Composite_Operation_Li st => (
I dentifier,
I dentifier,

o))

» Enclosing. Represents an operation that contains other operations as part of its execution.
The execution time is not the sum of execution times of the comprised operations,
because other pieces of code may be executed in addition. The enclosed operations need
to be considered for the purpose of calculating the blocking times associated with their
shared resource usage. Its additional attributes are:

- Operation List: List of references to other operations

Operation (
Type => Encl osi ng,
Name => |dentifier,
Overri dden_Sched_Par aneters => Overridden_Sched_Paraneters,
Wor st _Case_Execution_Ti ne => Nornal i zed_Execution_Ti ne,
Avg_Case_Execution_Ti ne => Normal i zed_Execution_Ti ne,
Best _Case_Execution_Tine => Normal i zed_Execution_Ti ne,
Conposite_Operation_Li st => (
Identifier,
I dentifier,
o))
7.8 Events

Events may be internal or external, and represent channels of event streams, through which
individual event instances may be generated. An event instance activates an instance of an
activity, or influences the behavior of the event handler to which it is directed.

» Internal events. They are generated by an event handler. Their attributes are:
- Name.

- Timing Requirements. Reference to the timing requirements imposed on the
generation of the event. See the description of timing requirements below

I nternal _Event = (
Type => Regul ar,

Description of the MAST Model- 31/10/02 - Page 15



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Event => | dentifier)
Ti m ng_Requi renents => Ti mi ng_Requi renment)

For the external events, the following classes are defined:

» Periodic. Represents a stream of events that are generated periodically. They have the
following attributes:

- Name.
- Period. Event period.

- Max Jitter. The event jitter isan amount of time that may be added to the activation
time of each event instance, and is bounded by the maximum jitter attribute. It
influences the schedulability of the system.

- Phase. It isthe instant of the first activation, if it had no jitter. After that time, the
following events are periodic (possibly with jitter).

Ext ernal _Event = (

Type => Peri odi c,

Name => |dentifier,

Peri od => Ti me,

Max_Jitter => Maxinmum jitter of Periodic event,

Phase =>

- Name

Absol ute_Ti ne) ;

» Sngular. Represents an event that is generated only once. It has the following attributes:

- Phase. It istheinstant of the first activation.

Ext ernal _Event = (

Type => Si ngul ar,
Narme => |dentifier,
Phase => Absol ute_Ti ne);

Sooradic. Represents a stream of aperiodic events that have a minimum interarrival time.

They have the following attributes:

- Name

- Min Interarrival. Minimum time between the generation of two events.

- Average Interarrival. Average interarrival time

- Distribution. It represents the distribution function of the aperiodic events. It can

be Uniform or Poisson.

Ext ernal _Event = (

Type => Spor adi c,

Name => |dentifier,
Avg Interarrival => Ti ne,

Di stribution => Uni f or m Poi sson,
Mn_Interarrival => Tine);

Description of the MAST Model- 31/10/02 - Page 16



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Unbounded. Represents a stream of aperiodic events for which it is not possible to
establish an upper bound on the number of events that may arrivein agiven interval.

They have the following attributes:

- Name

- Average Interarrival. Average interarrival time

- Distribution. It represents the distribution function of the aperiodic events. It can

be Uniform or Poisson.

Ext ernal _Event = (

Type =>
Name =>
Avg Interarrival =>
Di stribution =>

Unbounded,
Identifier,

Ti me,

Uni f or m Poi sson) ;

Bursty. Represents a stream of aperiodic events that have an upper bound on the number
of events that may arrive in agiven interval. Within thisinterval, events may arrive with
an arbitrarily low distance among them (perhaps as a burst of events). They have the

following attributes:

- Name

- Bound_Interval. Interval for which the amount of event arrivalsis bounded

- Max_Arrivals. Maximum number of events that may arrive in the Bound_Interval.

- Average Interarrival. Average interarrival time.

- Distribution. It represents the distribution function of the aperiodic events. It can

be Uniform or Poisson.

Ext ernal _Event = (

Type =>
Name =>
Avg Interarrival =>
Di stribution =>
Bound_I nt erval =>
Max_Arrival s =>

Bur sty,
Identifier,

Ti me,

Uni f or m Poi sson,
Ti me,

Positive);

7.9 Timing Requirements

They represent requirements imposed on the instant of generation of the associated internal
event. There are different kinds of requirements:

» Deadlines. They represent a maximum time value allowed for the generation of the
associated event. They are expressed as arelative timeinterval that is counted in two
different ways:

- Local Deadlines: they appear only associated with the output event of an activity;
the deadlineisrelative to the arrival of the event that activated that activity.

- Global deadlines: the deadline isrelative to the arrival of aReferenced Event, that
is an attribute of the deadline.

Description of the MAST Model- 31/10/02 - Page 17



In addition, deadlines may be hard or soft:

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

- Hard Deadlines: they must be met in all cases, including the worst case

- Soft Deadlines: they must be met on average.

This gives way to four kinds of deadlines:

- Hard Global Deadline. Attributes are the value of the Deadline, and a reference to

the Referenced Event.

- Soft Global Deadline. Attributes are the value of the Deadline and areferenceto

the Referenced Event.

- Hard Local Deadline. The only attribute is the value of the Deadline.

- Soft Local Deadline. The only attribute is the value of the Deadline

Ti m ng_Requi rement = (
Type
Deadl i ne
Ref erenced_Event

Ti m ng_Requi renent = (

Type
Deadl i ne

Ti m ng_Requi rement = (
Type
Deadl i ne
Ref erenced_Event

Ti m ng_Requi rement = (

Type
Deadl i ne

Hard_d obal _Deadl i ne,
Ti me,
Identifier)

Har d_Local _Deadl i ne,
Ti me)

Soft _d obal _Deadl i ne,
Ti me,
Identifier)

Soft _Local _Deadl i ne,
Ti me)

* Max Output Jitter Requirement: Represents a requirement for limiting the jitter with
which a periodic internal event is generated. Output jitter is calculated as the difference
between the worst-case response time and the best-case response time for the associated
event, relative to a Referenced Event that is an attribute of this requirement.

Consequently, the attributes are:
- Max Output Jitter. Time value.

- Referenced Event. Reference to an event.

Ti m ng_Requi renent = (
Type
Max_Qut put _Jitter
Ref erenced_Event

=>
=>
=>

Max_Qut put _Jitter_Req,
Ti me,
Identifier)

* Max Miss Ratio: Represents a kind of soft deadline in which the deadline cannot be
missed more often than a specified ratio. Its attributes are

- Deadline. Time Vaue

- Ratio. Percentage representing the maximum ratio of missed deadlines

Description of the MAST Model- 31/10/02 - Page 18



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

There are two kinds of Max Miss Ratio requirements: global or local:

- Local Max Miss Ratio. The deadline is relative to the activation of the activity to
which the timing requirement is attached. It has no additional attributes.

- Global Max Miss Ratio. Thedeadlineisrelativeto a Referenced Event, which isan

additional attribute of this class.

Ti m ng_Requi rement = (

Type
Deadl i ne
Ratio

Ref erenced_Event

Ti m ng_Requi renent = (

Type
Deadl i ne
Rati o

d obal _Max_M ss_Rati o,
Ti me,

Per cent age,
Identifier)

Local _Max_M ss_Rati o,
Ti me,
Per cent age)

Composite: An event may have severa timing requirements imposed at the same time,
which are expressed via a composite timing requirement. It isjust alist of simpletiming
requirements.

Ti m ng_Requi rement = (

Type
Requi renment s_Li st

=> Conposite,

:>(

Ti m ng_Requi renent 1
Ti m ng_Requi rement 2,

)

7.10 Event Handlers

Event handlers represent actions that are activated by the arrival of one or more events, and that
in turn generate one or more events at their output. There are two fundamental classes of event
handlers. The Activitiesrepresent the execution of an operation by a scheduling server, in a
processing resource, and with some given scheduling parameters. The other operations are just
amechanism for handling events, with no runtime effects. Any overhead associated with their
implementation is charged to the associated activities. Figure 5 shows the different classes of
events.

« Activity. It represents an instance of an operation, to be executed by a scheduling server.
Its attributes are:

- Input event. Reference to the event
- Output event. Reference to the event
- Activity Operation. Reference to the operation

- Activity server. Reference to the scheduling server (which in turn contains
references to the scheduling parameters and the processing resource).

Event _Handl er = (

Type => Activity,

Description of the MAST Model- 31/10/02 - Page 19



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Activity / Rate Divisor / Delay / Offset

— —
Concentrator Barrier
s St
Ddivery / Query Server Multicast
v
/ /
— +.- — o
- S
Figureb5. Classes of Event Handlers
I nput _Event => |dentifier,
Qut put _Event => |dentifier,
Activity Operation => |dentifier,
Activity_Server => | dentifier)

« System Timed Activity. It represents an activity that is activated by the system timer, and
thusis subject to the overheads associated with it. It only makes sense to have a System
Timed Activity that is activated from an external event, or an event generated by the
Delay or Offset event handlers (see below). It has the same attributes as the regular

activity.

Event _Handl er = (

Type =>
| nput _Event =>
Qut put _Event =>
Activity_Operation =>
Activity_Server =>

System Ti med_Activity,
Identifier,
Identifier,
Identifier,
Identifier)

» Concentrator. It is an event handler that generates its output event when any one of its

input events arrives. Its attributes are:

- Input events. References to the input events

- Output event. Reference to the output event

Event _Handl er = (

Type => Concentrator,
Cut put _Event => |dentifier,
| nput _Events_Li st = (

Identifier,

I dentifier,

))

Description of the MAST Model- 31/10/02 - Page 20



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

» Barrier. It isan event handler that generates its output event when all of itsinput events
have arrived. For worst-case analysis to be possibleit is necessary that al the input
events are periodic with the same periods. This usually represents no problem if the
concentrator is used to perform a*“join” operation after a“fork” operation carried out
with the Multicast event handler (see below). Its attributes are:

- Input events. References to the input events

- Output event. Reference to the output event

Event _Handl er = (

Type => Barrier,
Qut put _Event => |dentifier,
I nput _Events_Li st => (

I dentifier,

I dentifier,

)

» Délivery Server. It isan event handler that generates one event in only one of its outputs
each time an input event arrives. The output path is chosen at the time of the event
generation. Its attributes are:

- Input event. Reference to the input event
- Output events. References to the output events
- Delivery Palicy. Isthe policy used to determine the output path. It may be Scan (the

output path is chosen in a cyclic fashion) or Random

Event _Handl er = (

Type => Del ivery_Server,
Del i very_Policy => Scan| Random
| nput _Event => |dentifier,
Qut put _Events_Li st => (
Identifier,
I dentifier,

)

* Query Server. It isan event handler that generates one event in only one of its outputs
each time an input event arrives. The output path is chosen at the time of the event
consumption by one of the activities connected to an output event. Its attributes are:

- Input event. Reference to the input event
- Output events. References to the output events

- Reqguest Policy. Isthe policy used to determine the output path when there are
several pending requests from the connected activities. It may be Scan (the output
path is chosen in a cyclic fashion), Priority (the highest priority activity wins),
FIFO or LIFO.

Event _Handl er = (

Type => Query_Server,
Request _Policy => Priority| FI FQ LI FQ Scan,
| nput _Event => |dentifier,

Description of the MAST Model- 31/10/02 - Page 21



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Qut put _Events_Li st => (
I dentifier,
I dentifier,

)

* Multicast. It is an event handler that generates one event in every one of its outputs each
time an input event arrives. Its attributes are:

- Input event. Reference to the input event

- Output events. References to the output events

Event _Handl er = (
Type => Mul ticast,

I nput _Event => |dentifier,
Qut put _Events_Li st => (

| dentifier,

I dentifier,

)

» RateDivisor. It isan event handler that generates one output event when a number of
input events equal to the Rate Factor have arrived. Its attributes are:

- Input event. Reference to the input event
- Output event. Reference to the output event

- Rate Factor. Number of events that must arrive to generate an output event

Event _Handl er = (

Type => Rat e_Di vi sor,
| nput _Event => |dentifier,
Cut put _Event => |dentifier,
Rat e_Fact or => Positive)

Ddlay. It isan event handler that generates its output event after atimeinterval has
elapsed from the arrival of the input event. Its attributes are:

- Input event. Reference to the input event

- Output event. Reference to the output event

- Delay Max Interval. Longest time interval used to generate the output event

- Delay Min Interval . Shortest time interval used to generate the output event

Event _Handl er = (

Type => Del ay,

| nput _Event => |dentifier,
Qut put _Event => |dentifier,
Del ay_Max_I nt erval => Ti ne,

Del ay_M n_Interval => Ti ne)

Offset. It issimilar to the Delay event handler, except that the time interval is counted
relative to the arrival of some (previous) event. If the timeinterval has aready passed
when the input event arrives, the output event is generated immediately. Its attributes are
the same as for the Delay event handler, plus the following:

Description of the MAST Model- 31/10/02 - Page 22



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

- Referenced Event: Reference to the appropriate event.

Event _Handl er = (

Type => O f set,

I nput _Event => |dentifier,
Qut put _Event => |dentifier,
Del ay_Max_I nterval => Ti ne,

Del ay_M n_I nterval => Ti ne,

Ref erenced_Event => | dentifier)

7.11 Transactions

The transaction is a graph of event handlers and events, that represents activities executed in
the system which areinterrelated. A transaction is defined with three different components that
have already been described:

» A list of external events
* Alist of internal events, with their timing requirementsif any

* A list of Event handlers

In addition, each transaction has a Name attribute. Thereis only one class of transaction
defined, called aRegular transaction.

Transaction (

Type => Regul ar,
Name => |dentifier,
Ext ernal _Events = (

Ext ernal _Event 1,
Ext er nal _Event 2,
),
I nternal _Events => (
I nternal Event 1,
I nternal Event 2,

),

Event _Handl ers => (
Event _Handl er 1,
Event _Handl er 2,

o))

7.12 Overall Mode

A Real-Time situation represents the overall MAST model of areal-time situation that a
particular system may have, and that needs to be analyzed. Global information about the real-
time situation is described in the Model object, which contains the following attributes:

* Model name: astring

* Model date: the date in which the real-time situation model was created.

Model (
Model _Name => |dentifier,

Description of the MAST Model- 31/10/02 - Page 23



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Model _Dat e => YYYY- Mt DDThh: mm ss) ;

8. Templatesfor the MAST File

-- Real -Time System Mdel
-- File format

-- This line is just an exanple of a comrent

Model (

Model _Nane => |dentifier,

Model _Dat e => YYYY- Mt DDThh: mm ss) ;
-- Resources

Processi ng_Resource (

Type => Fixed Priority_Processor,
Nane => Nane of the processing resource,
Max_Priority => Task Priority,
Mn_Priority => Task Priority,
Max_Interrupt_Priority => Interrupt Priority,
Mn_Interrupt_Priority => Interrupt Priority,
Wor st _Context _Switch => WCS Tine for Processors,
Avg_Context_Swi tch => ACS Tinme for Processors,
Best _Cont ext _Switch => BCS Tinme for Processors,
Worst | SR Switch => WSR Tinme for Processors,
Avg | SR Switch => AISR Tinme for Processors,
Best _| SR _Swi tch => BISR Tinme for Processors,

System Ti ner =>
Speed_Fact or =>

System Ti ner,
Fl oat) ;

-- real execution tinmes = nornealized execution tines/Speed_Factor;
-- Ticker Overhead is real execution tine

Processi ng_Resource (

Type => Fixed Priority_Network,
Nane => Nane of the processing resource,
Max_Priority => Message Priority,
Mn_Priority => Message Priority,
Packet Wbrst Over head => PWO for Networks,
Packet _Avg_ Over head => PAO for Networks,
Packet Best_ Over head => PBO for Networks,
Transm ssi on => Sinpl ex | Hal f_Duplex | Full _Dupl ex,
Max_Packet _Transm ssion_Ti ne => Max Packet transm ssion tine,
M n_Packet _Transm ssion_Ti ne => M n Packet transm ssion tine,
Speed_Fact or => Fl oat,
Li st _of _Drivers = (
Driver 1,
Driver 2,

)

-- Overheads are normalized execution tines.

Description of the MAST Model- 31/10/02 - Page 24



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Real execution tines = normalized_execution_tine/processor speed
Packet _Transmission _Time is the real transmission tine

System Ti ners

System Ti mer = (

Type =>
Wor st _Over head =>
Avg_ Over head =>
Best _Over head =>
Peri od =>
System Ti nmer = (
Type =>
Wor st _Over head =>
Avg Over head =
Best Over head =>
Drivers
Driver = (
Type =>
Packet _Server =>
Packet _Send_Operation =
Packet _Recei ve_Operation =>

Driver = (

Ti cker

Wor st Over head of ticker

Avg Over head of ticker,

Best Overhead of ticker,

Period of ticker for Processors)

Al arm Cl ock

Wor st Overhead of tinmer,
Avg Over head of tiner,
Best Overhead of tinmer,

Packet Driver,

Schedul i ng_Server,
Si npl e Operation,
Si mpl e Operation)

The schedul i ng server and the operations are enbedded in the

but wi thout the keywords

Character Packet Driver,
Schedul i ng_Server,
Si npl e Operation,
Si npl e Operati on,
Schedul i ng_Server,
Si npl e Operation,
Si npl e Operati on,

-- description, with all their attributes,
-- "Scheduling_Server" or "Operation”
Type =>
Packet _Server =>
Packet _Send_Operation =>
Packet _Recei ve_Operation =>
Character_Server =>
Character _Send_Operation =

Char act er _Recei ve_QOperation =>
Character_Transm ssi on_Ti ne =>

Transmni ssion Tine)

The scheduling server and the operations are enbedded in the
description, with all their attributes, but w thout the keywords

-- "Scheduling_Server" or "Operation"
-- Shared Resources
Shar ed_Resource (
Type => | medi ate_Cei |l i ng_Resource,
Name => Nane of the data resource,
Ceiling => Ceiling of resource, any priority,
Preassi gned => No);
Shar ed_Resource (
Type => Priority_Ilnheritance_Resource,

Description of the MAST Model- 31/10/02 - Page 25



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Name => Nane of the data resource);

-- Operations

Operation (
Type => Sinpl e,
Nanme => Nane of the operation

Overridden_Sched_Paraneters
Wor st _Case_Execution_Ti ne
Avg Case_Execution_Ti ne

Overri dden_Sched_ Paraneters,
WCET,
ACET,

Best Case_ Execution_Tine => BCET,
Shar ed_Resources_To_Lock = (
Shared Resource Nanme 1,
Shared Resource Nane 2,
),
:>(
Shared Resource Nane 1,
Shared Resource Nanme 2,
o))
-- The resources specified under Shared_Resources_To_Lock are | ocked
-- before the operation starts, in the order defined.
-- The resources specified under Shared_Resources_To_Unl ock are unl ocked
-- after the operation conpletes, in the order defined.
-- WCET, ACET and BCET are nornmlized execution tines.

Shar ed_Resources_To_Unl ock

-- Real execution tines = nornmlized_execution_tine/speed factor
Operation (

Type => Sinpl e,

Nane => Nane of the operation

Overri dden_Sched_Par anet ers => Overridden_Sched_Paraneters,

Wor st _Case_Execution_Ti ne => WCET,

Avg_Case_Execution_Ti nme => ACET,

Best _Case_Execution_Ti ne => BCET,

Shar ed_Resources_Li st => (

Shared Resource Name 1,

Shared Resource Nanme 2,

o))
-- This is an alternative way to declare a sinple object. The resources
-- specified under Shared Resources_List are | ocked before the operation
-- starts, in the order defined, and are unl ocked when the operation
-- finishes, in the reverse order
-- WCET, ACET and BCET are nornmlized execution tines.

-- Real execution tinmes = nornmalized_execution_tine/speed factor
Operation (

Type => Conposite,

Nane => Nane of the operation

Overri dden_Sched_Par anet ers => Overridden_Sched_Paraneters,

Conposite_Operation_List => (

Operation Name 1,
Operation Name 2,

Description of the MAST Model- 31/10/02 - Page 26



Operation (
Type
Nanme
Overridden_Sched_Paraneters
Wor st _Case_Execution_Ti ne
Avg Case_Execution_Ti ne
Best Case_ Execution_Tine
Conposite_COperation_Li st

-- WCET, ACET and BCET are nornmm
-- Real execution tinmes = normali

-- Scheduling Servers

Schedul i ng_Server (
Type
Nanme
Server _Sched_Par aneters
Server _Processi ng_Resource

-- Transactions

Transaction (
Type
Nane
Ext ernal _Events

I nternal _Events

Event _Handl ers

-- External Events

Ext ernal _Event = (
Type
Nanme
Peri od
Max_Jditter
Phase

-- The Phase represents the absolute start time of the first period,

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

)

=> Encl osi ng,

=> Nane of the operation,

=> Overri dden_Sched Paraneters,
=> WCET,

=> ACET,

=> BCET,

:>(

Operation Name 1,

Operation Nanme 2,

)5

i zed execution tines.
zed_execution_tinme/speed factor

=> Fixed_Priority,

=> Nane of the server,

=> Fixed Priority_Sched Paraneters,
=> Nane of the Processing Resource);

=> Regul ar,

=> Nane of the transaction,

:>(

External Event 1,

Ext ernal _Event 2,
),

:>(

I nternal Event 1,

I nternal Event 2,
),

= (

Event _Handler 1

Event Handl er 2,

o))

=> Peri odi c,

=> Nane of the event,

=> Period of the Periodic event,

=> Maxinmum jitter of Periodic event,
=> Phase of Periodic event);

-- i.e., the first event generation time if Max_Jitter=0

Description of the MAST Model- 31/10/02 - Page 27



Ext ernal _Event = (
Type
Nane
Phase

-- The Phase represents the abso

-- is generated

Ext ernal _Event = (
Type
Name
Avg Interarriva
Di stribution
Mn_Interarriva

Ext ernal _Event = (
Type
Narnme
Avg_lnterarriva
Di stribution

Ext ernal _Event = (
Type
Nanme
Avg_lnterarriva
Di stribution
Bound_I nterva
Max_Arrival s

-- Timng requirenents

Ti m ng_Requi rement = (
Type
Deadl i ne
Ref erenced_Event

Ti m ng_Requi renent = (

Type
Deadl i ne

Ti m ng_Requi rement = (
Type
Deadl i ne
Ref erenced_Event

Ti m ng_Requi renent = (

Type
Deadl i ne

Ti m ng_Requi rement = (

Type
Deadl i ne

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Si ngul ar,

Name of the event,

Phase of Periodic event);
ute tinme at which the event

Spor adi c,

Nane of the event,

Average interarrival tine,
Uni f or m Poi sson,

M nimuminterarrival tine);

Unbounded,

Nane of the event,

Average interarrival tine,
Uni f or m Poi sson) ;

Bur sty,

Nane of the event,

Average interarrival tine,
Uni f or m Poi sson,

Interval of Bursty events,
Maxi mum number of arrivals);

Hard_d obal Deadl i ne,
Deadl i ne,
Name of Event)

Har d_Local _Deadl i ne,
Deadl i ne)

Soft _d obal _Deadl i ne,
Deadl i ne,
Name of Event)

Soft _Local _Deadl i ne,
Deadl i ne)

d obal _Max_M ss_Rati o,
Deadl i ne,

Description of the MAST Model- 31/10/02 - Page 28



Rati o =>

Ref er enced_Event =>
Ti m ng_Requi renent = (

Type =>

Deadl i ne =

Rati o =>
Ti m ng_Requi renent = (

Type =>

Max_Qut put _Jitter =>

Ref er enced_Event =>
Ti m ng_Requi rement = (

Type =>

Requi rement s_Li st =>

Ti m ng_Requi r enent

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Per cent age,
Name of Event)

Local _Max_M ss_Rati o,
Deadl i ne,
Per cent age)

Max_Qut put _Jitter_Req,
Maxi mum out put jitter,
Name of Event)

Conposite,

(
1,

Ti m ng_Requi renent 2,

Schedul i ng Par anmeters

Fi xed_Priority_Sched_Paraneters

1]
~

Type =>
The Priority =>
Pr eassi gned =>
Fi xed _Priority Sched Paraneters = (
Type =>
The_Priority =>
Pr eassi gned =
Fi xed_Priority_Sched_Paraneters = (
Type =>
The_Priority =>
Preassi gned =>
Fi xed_Priority_Sched_Paraneters = (
Type =>
The Priority =
Preassi gned =>
Pol I'i ng_Peri od =>
Pol I'i ng_Worst_Over head =
Pol I i ng_Avg_Over head =>
Pol 1'i ng_Best _Over head =>

Pol ling overheads are relative

Fi xed_Priority_Sched_Paraneters = (

Type =>
Normal _Priority =>
Preassi gned =>

))

Non_Preenti bl e_FP_Poli cy,
Priority,
Yes | No)

Fi xed_Priority_ Policy,
Priority,
Yes | No)

Interrupt _FP_Policy,
Interrupt Priority,
Yes)

Pol I'i ng_Pol i cy,

Priority,

Yes | No,

Period of polling

Wor st overhead of polling
Aver age overhead of polling
Best overhead of polling)
execution tines

Spor adi c_Server _Policy,
Priority,
Yes | No,

Description of the MAST Model- 31/10/02 - Page 29



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Background_Priority => Background priority,

Initial _Capacity => |nitial Capacity,

Repl eni shnent _Peri od => Repl eni shrent peri od,

Max_Pendi ng_Repl eni shnent s => Maxi num of pendi ng repl eni shrent)

Overridden_Sched_Par ameters
Type => Overridden_Fi xed Priority,
The Priority => Priority)

1]
~

Overridden_Sched_Par anmeters
Type => Overridden_Per manent _FP,
The_Priority => Priority)

1
—~

-- Internal Events

I nternal _Event = (

Type => Regul ar,
Event => Nane of the event)
Ti m ng_Requi renents => Ti mi ng_Requi renment)

-- Note: Events can be internal or external. External events are decl ared
-- as described before.

- - Internal events are declared as part of the transaction.

- - Each event can only be referenced by one event handl er as an input
- - event, and by one event handl er as an output event

-- Event Handl ers

Event _Handl er = (

Type => Activity,

I nput _Event => Name of the Event,

Qut put _Event => Nane of the Event,

Activity Operation => Nane of the operation,
Activity_Server => Nane of the scheduling server)

Event _Handl er = (

Type => System Ti med_Activity,

| nput _Event => Nane of the Event,

Qut put _Event => Nane of the Event,
Activity_Operation => Nane of the operation,
Activity_Server => Nane of the scheduling server)

Event _Handl er = (

Type => Concentrat or,
Qut put _Event => Nane of the Event,
| nput _Events_Li st => (

Name of the Event 1,
Name of the Event 2,

)

Event _Handl er = (
Type => Barrier,

Description of the MAST Model- 31/10/02 - Page 30



Cut put _Event
| nput _Events_Li st

Event Handl er = (

Type
Delivery_Policy

| nput _Event

Qut put _Events_Li st

Event _Handl er = (

Type

Request _Policy

| nput _Event

Qut put _Events_Li st

Event _Handl er = (

Type
I nput _Event
Qut put _Events_Li st

Event _Handl er = (

Type

| nput _Event

Cut put _Event
Rat e_Fact or

Event _Handl er = (

Type

| nput _Event

Cut put _Event

Del ay_Max_I nterva
Delay_Mn_Interva

Event _Handl er = (

Type

I nput _Event

Cut put _Event

Del ay_Max_lInterva
Del ay_Mn_lnterva

Grupo de Computadoresy Tiempo Real

=> Nane of the Event,
:>(

Name of the Event 1,
Name of the Event 2,

o))

=> Del ivery_Server,
=> Scan| Random

=> Nane of the Event,
:>(

Name of the Event 1,
Name of the Event 2,

o))

=> Query_Server,

Universidad de Cantabria

=> Priority| FI FQ LI FQ Scan

=> Nane of the Event,
:>(

Name of the Event 1,
Name of the Event 2,

)

=> Mil ticast,

=> Nane of the Event,
= (

Name of the Event 1,
Name of the Event 2,

o))

=> Rate_Di vi sor,
=> Nane of the Event,
=> Nane of the Event,

=> Factor of Rate Divisor)

=> Del ay,
=> Nane of the Event,
=> Nane of the Event,

=> Maxi num del ay interval,
=> M ni num del ay interval)

=> (Of fset,
=> Nane of the Event,
=> Nane of the Event,

=> Maxi num del ay interval,
=> M ni num del ay interval,

Description of the MAST Model- 31/10/02 - Page 31



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Ref er enced_Event => Nane of referenced event)

9. Reaults File Format

Theresults of the analysis are stored in theresults file and are attached to different elements of
the MAST model:

» theoverdl system:
- dacks
- traces

* transactions:

- timing results: for each output event global response times (worst, best average)
and maximum output jitter

- transaction-specific slack
* processing resources:

- dack

- Uutilization

- scheduler queue size
e operations:

- dack
» scheduling servers:

- priorities
* shared resources:

- priority ceilings

- Queuesize

The format of the resultsfile is described next. Theresultsfileisin text format and follows the
same rules asthe MAST model file (see Section 6, “Writing the MAST file”). The resultsfile
contains objects of the following types, without any particular ordering imposed:

9.1 Real-Time Situation

The overall system results are relative to areal-time situation that has been analyzed, and
contain a set of results (described below) and the following attributes:

* Model_Name: Name of the analyzed real-time situation model.

* Model_Date: Date of last modification of the analyses real-time situation model, in the
SO 8601 format YYYY- MVt DDThh: nm ss.

» Generation_Tool: Quoted text representing the name of the tool that generated the
results.

Description of the MAST Model- 31/10/02 - Page 32



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

» Generation_Profile: Quoted text representing the command and options used to invoke
the tool for the generation of the results.

» Generation_Date: Date of generation of results, in the SO 8601 format YYYY- M\
DDThh: mm ss.

Real Time_Situation (

Model _Name => |dentifier,
Model _Dat e => YYYY- Mt DDThh: mm ss,
Gener at or _Tool => “Text"”,
Ceneration_Profile => “Text”,
Generation_Date => YYYY- Mt DDThh: mm ss,
Results => (

Result 1,

Result 2,

o))

The specific results that may refer to areal-time situation are:

» dack: If positive, it isthe percentage by which all the execution times of all the
operations in the real-time situation may be increased while still keeping the system
schedulable. If negative, it is the percentage by which all the execution times of all the
operations in the real-time situation have to be decreased to make the system
schedulable. If zero, it means that the system is just schedul able.

Result = (
Type => Sl ack,
Val ue => Per cent age)

* Trace: It describes the name of afile where trace information on the simulation of a
MAST real-time situation can be found.

Result = (
Type => Trace,
Pat hnane => Pat hnane)

9.2 Transaction
The transaction results are relative to a transaction in the system that has been analyzed, and

contain the name of the transaction and a set of results (described below), using the following
format:

Transaction (

Nanme => |dentifier,
Resul ts = (
Result 1,
Result 2,

o))

The specific results that may refer to areal-time situation are:

Description of the MAST Model- 31/10/02 - Page 33



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

» dack: If positive, it is the percentage by which all the execution times of all the
operations used by the transaction may be increased while still keeping the system
schedulable. If negative, it is the percentage by which all the execution times of all the
operations used by the transaction have to be decreased to make the system schedulable.
If zero, it means that the transaction is just schedulable.

Result = (
Type => Sl ack,
Val ue => Per cent age)

» Timing_Result: Represents the timing results of arelevant event of the transaction and
obtainable by a schedulability analysistool. Its attributes are:

- Event_Name: Name of event. The timing results always corresponds to the activity
or activities that generated the event represented by this name.

- Worst_Local_Response Time: Worst local response time, measured as the worst
difference between the activation and completion times of the activity that
generated the event with this result.

- Best_Local_Response Time: Best local response time, measured as the best
difference between the activation and completion times of the activity that
generated the event with this result.

- Worst_Blocking_Time: Worst-case delay caused by the used of shared resources. It
represents the blocking time for the segment of activities preceding the referenced
event. A segment of activitiesis aset of consecutive activities (consecutive in the
transaction graph) that are run by the same scheduling server.

- Num_Of Suspensions: Maximum number of suspensions caused by shared
resources, for the segment of activities preceding the referenced event.

- Worst_Global _Response Times: List of global response times each representing
the worst-case response time relative to a particular input event.

- Best_Global _Response Times: List of global response times each representing the
best-case response time relative to a particular input event.

- Jitters: List of maximum output jitter values, each representing the maximum jitter
relative to a particular input event.

Result = (

Type => Tim ng_Resul t,

Event _Nane => |dentifier,

Wor st _Local _Response_Ti ne => Ti ne,

Best _Local _Response_Ti ne => Ti ne,

Wor st _Bl ocki ng_Ti ne => Tine,

Num Of _Suspensi ons => Natural,

Wor st _d obal _Response_Ti nes = (
G obal _Response_Tinme 1,
G obal _Response_Tinme 2,

),
Best _d obal _Response_Ti nes = (

G obal _Response_Tinme 1,

Description of the MAST Model- 31/10/02 - Page 34



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

G obal _Response_Tinme 2,

),

Jitters => (
G obal _Response_Tinme 1,
G obal _Response_Tinme 2,

o))

« Smulation_Timing_Result: Represents the timing results of arelevant event of the
transaction and obtained by a simulation tool. Its attributes are those of a Timing_Result
plus the following:

- Avg_Local_Response Time: Average local response time, measured as the average
difference between the activation and completion times of the activity that
generated the event with this result.

- Avg_Blocking_Time: Average-case delay caused by the used of shared resources. It
represents the average blocking time for the segment of activities preceding the
referenced event. A segment of activitiesis a set of consecutive activities
(consecutive in the transaction graph) that are run by the same scheduling server.

- Max_Preemption_Time: Maximum time spent by the activity preceding the event
in the scheduler ready queue, while having been activated by a specific event
instance. Thisis equivalent to the time the activity is being preempted by higher
priority activities.

- Suspension_Time: Maximum time spent in the activity input queue by the event
that triggered the activity preceding the event to which thisresult is attached. This
timeislarger than zero only if the triggering event arrives while the activity is still
busy processing a previous event.

- Num_Of Queued Activations. Maximum number of pending activationsin the
input queue of the activity preceding the referenced event.

- Avg_Global_Response Times: List of global response times each representing the
average-case response time relative to a particular input event.

- Local_Miss Ratios: List of local miss ratios, each representing the ratio of events
that have missed a specific soft local deadline.

- Global_Miss Ratios: List of global miss ratios, each representing the ratio of
events generated at a specific input event channel, that have missed a specific soft

global deadline.

Result = (
Type => Sinul ation_Ti m ng_Result,
Event _Nane => |dentifier
Wor st _Local _Response_Ti ne => Ti ne,
Avg _Local _Response_Ti ne => Ti ne,
Best _Local _Response_Ti ne => Tine,
Wor st _Bl ocki ng_Ti ne => Ti ne,
Avg_Bl ocki ng_Ti e => Ti ne,
Max_Preenption_Ti ne => Tine,
Suspensi on_Ti ne => Ti ne,
Num Of _Suspensi ons => Nat ur al
Num Of _Queued_Acti vati ons => Nat ur al

Description of the MAST Model- 31/10/02 - Page 35



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Wor st _d obal _Response_Ti nes = (
d obal _Response_Tinme 1,
G obal _Response_Tine 2

),

Avg _d obal _Response_Ti nes => (
G obal _Response_Tinme 1,
G obal _Response_Tinme 2,

),

Best _d obal _Response_Ti nes = (
G obal _Response_Tinme 1,
d obal _Response_Tinme 2,

),
Jitters => (
d obal _Response_Tinme 1,
G obal _Response_Tine 2
),
Local M ss_Rati os = (
Mss Ratio 1,
M ss_Ratio 2,
),
G obal _M ss_Rati os => (
G obal _Mss_Ratio
G obal _Mss_Ratio

o))

M

A Global _Response Time contains the following attributes:

» Referenced_Event: Name of referenced input event, used for calculating the response
time.

» Time_Value: Global responsetime, calculated as the difference between the arrival of the
input referenced event and the generation of the event to which the result is attached, and
adding the input jitter.

G obal _Response_Tine = (
Ref erenced_Event => |dentifier,
Ti me_Val ue => Ti ne),

A Miss_Ratio contains the following attributes:

» Deadline: Soft deadline against which the response time is compared to determine the
ration of missed deadlines.

» Ratio: Percentage of events that have missed the soft deadline, relative to the total
number of events.

Mss_Ratio = (
Deadl i ne => Ti me,
Rati o => Percent age),

A Global_Miss_Ratio contains the following attributes:

» Referenced Event: Name of referenced input event, used for calculating the response
time.

Description of the MAST Model- 31/10/02 - Page 36



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

* Miss Ratios: List of missratios.

G obal _Mss_Ratio = (
Ref erenced_Event => |dentifier,
M ss_Rati os => (
M ss_Ratio 1,
M ss_Ratio 2,

o))

9.3 Processing_Resource

The processing resource results are rel ative to a processing resource in the system that has been
analyzed, and contain the name of the resource and a set of results (described below), using the
following format:

Processi ng_Resour ce(

Nanme => |dentifier,
Resul ts = (
Result 1,
Result 2,

o))
The specific results that may refer to a processing resource are:

» Sack: If positive, it is the percentage by which all the execution times of all the
operations executed in the processing resource may be increased while still keeping the
system schedulable. If negative, it is the percentage by which all the execution times of
all the operations executed in the processing resource have to be decreased to make the
system schedulable. If zero, it means that the processing resource is just schedulable.

Result = (
Type => Sl ack,
Val ue => Processing resource sl ack)

« Utilization: This result measures the relation, in percentage, between the time that the
processing resource is being used to execute activities, and the total elapsed time. It may
contain the following attributes:

- Total: overadl utilization in the processing result.

- Application: utilization of the processing resource by the application code, i.e.,
without the overhead elementsincluded in the MAST model: context and interrupt
switches, network drivers, and system timers.

- Context_Switch: utilization of the processing resource by context and interrupt
switch activities.

- Timer: utilization of the processing resource by the system timer overhead.

- Driver: utilization of the processing resource by the network drivers overhead.

Result = (
Type => Detailed Uilization,

Description of the MAST Model- 31/10/02 - Page 37



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Tot al => percent age,
Application => percent age,
Context _Switch => percent age,
Ti mer => percent age,
Driver => percent age)

* Ready Queue Sze: It contains the following attributes:

- Max_Num: Maximum number of scheduling serversthat are ssmultaneously ready
in the processing resource.

Result = (
Type => Ready_Queue_Si ze,
Max_Num => Positive)

9.4 Operation

The operation results are relative to an operation in the system that has been analyzed, and
contain the name of the operation and a set of results (described below), using the following
format:

Qperation (
Nane => Nane of the operation,
Results = (
Result 1,
Result 2,

o))

The specific results that may refer to an operation are:

« dack: If positive, it is the percentage by which the execution times of the operation may
be increased while still keeping the system schedulable. If negative, it is the percentage
by which the execution times of the operation have to be decreased to make the system
schedulable. If zero, it means that the system is just schedulable with regard to this

operation.
Result = (
Type => Sl ack,
Val ue => Per cent age)

9.5 Scheduling Server

The scheduling server results are relative to a scheduling server in the system that has been
analyzed, and contain the name of the scheduling server and a set of results (described below),
using the following format:

Schedul i ng_Server (

Nane => Nane of the scheduling server,
Results = (

Result 1,

Result 2,

o))

Description of the MAST Model- 31/10/02 - Page 38



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

The specific results that may refer to a scheduling server are:

» Scheduling_Parameters: The scheduling parameters that were used in the analyzed
system. Usually they are only written to the file if they were automatically calculated by
the priority assignment tools. See section on “ Scheduling Parameters’ for a description
of their format.

Result = (
Type => Schedul i ng_Par anet ers,
Server _Sched_Par anet ers => Fixed _Priority_ Sched_Paraneters)

9.6 Shared Resource

The shared resource results are relative to a shared resource in the system that has been
analyzed, and contain the name of the shared resource and a set of results (described below),
using the following format:

Shar ed_Resource (

Nane => Nane of the shared resource,
Results => (

Result 1,

Result 2,

o))

The specific results that may refer to a shared resource are:

» Caeiling: The priority ceiling automatically calculated by the MAST tool. Only shared
resources of the type Immediate_Ceiling_Resource may have thistype of result.

Result = (
Type => Priority_Ceiling,
Ceiling => Any _Priority)

* Queue Sze: Size of the waiting queue of the shared resource. It contains the following
attributes:

- Max_Num: Maximum number of threads that were queued in the shared resource,
waiting to lock it.

Result = (
Type => Queue_Si ze,
Max_Num => Maxi mum number)

» Utilization: It measures the total time that the shared resource has been locked during a
simulation, relative to the total elapsed time

Result = (
Type => Utilization,
Tot al => percent age)

Description of the MAST Model- 31/10/02 - Page 39



Grupo de Computadoresy Tiempo Real

Universidad de Cantabria

10. Example of a Single-Processor System: CASEVA

CASEVA isarobot designed for automatic welding of junctions between pieces that don’t
have axial symmetry. It has an embedded controller that uses a VM E-bus based computer (an
HP 743rt) running HP-RT asiits real-time operating system. The application software is
concurrent, and written in Ada. The basic characteristics of its tasks are shown in Figure 6.

T=5000us
C=1080us
Prio=415

R: Reporter ML: Messaage
L ogger
T=

T=1000000us
C=72952us
Prio=80

LM: Light_

Manager

T=10000Qus
Cc=219us
Prio=410

Figure 6. Basic Characteristics of the tasks of the CASEVA controller

Communication and synchronization between the different tasks is asynchronous, and based
on shared resources implemented using Ada’ s protected objects. In this document we present a
simplified view of the shared resources and associated protected operations, to make the
description shorter. The following table shows the characteristics of the ssimplified protected

objects and operations.

WCET

Shar ed Resour ce Operation (us) Used by

Servo_Data Read_New_Point 87 SC
New_Point 54 TP

Arm Read_Axis_Positions 135 SC,R
Control_Servos 99 SC

Lights Turn_On 74 TP
Turn_Off 71 TP
Time _Lights 119 LM

Alarms Read All 78 SC, TP, R
Set 59 SC, TP

Error_Log Notify Error 85 TP
Get_Error_From _Queue | 79 ML

The MAST description of this system is shown next:

-- Real _tinme Situat

Model (

i on

Model Nanme=> Caseva,

Description of the MAST Model- 31/10/02 - Page 40



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Model _Dat e=> 2000- 01- 01) ;

-- Processing Resources

Processi ng_Resource (
Type => Fixed_Priority_ Processor
Narme => Processor_1,
Wor st _Context _Switch => 102.5,
System Ti ner =>
(Type => Al arm Cl ock
Wor st _Over head=> 50));

-- Scheduling Servers

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => Servo_Contr ol
Server _Sched_Paraneters => (
Type => Fixed_Priority_policy,

The _Priority => 415),
Server _Processi ng_Resource => Processor_1)

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => Traj ectory_Pl anni ng,
Server _Sched_Paraneters => (

Type => Fixed_Priority_policy,

The_Priority => 412),
Server _Processi ng_Resour ce=> Processor_1);

Schedul i ng_Server (

Type => Fixed Priority,
Name => Li ght _Manager
Server _Sched_Par anmet ers=> (
Type => Fixed_Priority_policy,

The_Priority => 410),
Server _Processi ng_Resource=> Processor_1);

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => Reporter,
Server _Sched_Par anmet er s=> (
Type => Fixed_Priority_policy,

The_Priority => 80),
Server _Processi ng_Resource=> Processor_1);

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => Message_logger
Server _Sched_Par anmet ers=> (
Type => Fixed_Priority_policy,

Description of the MAST Model- 31/10/02 - Page 41



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

The_Priority => 70),
Server _Processi ng_Resour ce=> Processor_1);

-- Resources

Shar ed_Resource (
Type => | medi ate_Cei l i ng_Resour ce,
Nanme => Servo_Data);

Shar ed_Resource (
Type => | nmmedi ate_Cei |l i ng_Resour ce,
Name = Arm;

Shar ed_Resource (
Type => | mmedi ate_Cei |l i ng_Resour ce,
Name => Lights);

Shar ed_Resource (
Type => | medi ate_Cei |l i ng_Resour ce,
Nane => Al arns);

Shar ed_Resource (
Type => | nmmedi ate_Cei |l i ng_Resour ce,
Name => Error_Log);

-- Operations

-- Critical Sections

Operation (
Type => Sinpl e,
Name => Read_New Poi nt,

Wor st _Case_Execution_Ti ne => 87,
Shared_Resources_List=> (Servo_Data));

Operation (
Type => Sinmpl e,
Nane => New_Poi nt,

Wor st _Case_Execution_Ti ne => 54,
Shared_Resources_List=> (Servo_Data));

Operation (
Type => Sinmpl e,
Name => Read_Axis_Positions,

Wor st _Case_Execution_Ti ne => 135,
Shared_Resources_List=> (Arm);

Operation (
Type => Sinpl e,
Narme => Control _Servos,

Description of the MAST Model- 31/10/02 - Page 42



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Wor st _Case_Execution_Tine => 99,
Shared_Resources_List=> (Arm);

Operation (
Type => Si npl e,
Nanme => Turn_On,

Wor st _Case_Execution_Tine => 74,
Shar ed_Resources_Li st=> (Lights));

Operation (
Type => Sinpl e,
Nane => Turn_Of,

Wor st _Case_Execution_Tine => 71,
Shar ed_Resources_Li st=> (Lights));

Operation (
Type => Sinpl e,
Nane => Ti me_Li ghts,

Wor st _Case_Execution_Tine => 119,
Shar ed_Resources_Li st=> (Lights));

Operation (
Type => Sinpl e,
Nane => Read_Al|l Al ar ns,

Wor st _Case_Execution_Tine => 78,
Shar ed_Resources_List=> (Alarns));

Operation (
Type => Sinpl e,
Nane => Set,

Wor st _Case_Execution_Ti ne => 59,
Shar ed_Resources_List=> (Alarns));

Operation (
Type => Sinpl e,
Name => Notify_Error,

Wor st _Case_Execution_Ti ne => 85,
Shared_Resources_List=> (Error_Log));

Operation (
Type => Si npl e,
Nane => Get _Error_From Queue,

Wor st _Case_Execution_Tine => 79,
Shared_Resources_List=> (Error_Log));

-- Encl osi ng operations

Operation (
Type => Encl osi ng,
Nane => Servo_Control,

Wor st _Case_Execution_Tinme => 1080,

Description of the MAST Model- 31/10/02 - Page 43



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Conposite_Operation_List =>
(Read_New_Poi nt, Read_Axi s_Posi tions, Control _Servos,
Read_All _Al arns, Set));

Operation (
Type => Encl osi ng,
Nane => Traj ectory_Pl anni ng,

Wor st _Case_Execution_Ti ne => 9045,
Conposite_Operation_List =>
(New_Point, Turn_On, Turn_Off,
Read_All _Al arns, Set, Notify Error));

Operation (
Type => Encl osi ng,
Nane => Li ght _Manager,
Wor st _Case_Execution_Tine => 119,
Conposite_Operation_List =>
(Time_Lights));

Operation (
Type => Encl osi ng,
Nane => Reporter,

Wor st _Case_Execution_Tinme => 72952,
Conposite_Operation_List =>
(Read_Axis_Positions, Read_All _Al arns));

Operation (
Type => Encl osi ng,
Nanme => Message_logger,

Wor st _Case_Execution_Tinme => 46820,
Conposite_Operation_List =>
(Get _Error_From Queue));

-- Transactions

Transaction (
Type => Regul ar,
Nane => Servo_Control,
Ext ernal _Events => (
(Type => Periodic,
Name => EI1,
Peri od => 5000)),
I nternal _Events => (
(Type => regular,
name => Ol,
Ti m ng_Requi renents => (
Type => Hard_d obal Deadl i ne,
Deadl i ne => 5000,
Ref erenced_Event => El1))),
Event _Handl ers => (

Description of the MAST Model- 31/10/02 - Page 44



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

(Type => System Ti nmed_Activity,
| nput _Event => EI1,
Cut put _Event => 01,
Activity Operation => Servo_Control,
Activity Server=> Servo_Control)));

Transaction (
Type => Regul ar,
Nane => Traj ectory_Pl anni ng,
Ext ernal _Events => (
(Type => Periodic,
Name => E2,
Peri od => 50000)),
Internal Events => (
(Type => regqular,
name => O2,
Ti m ng_Requi renents => (
Type => Hard_d obal Deadl i ne,
Deadl i ne => 50000,
Ref erenced_Event => E2))),
Event _Handl ers => (
(Type => System Ti ned_Activity,
| nput _Event => E2,
Cut put _Event => 2,
Activity Operation => Trajectory_Pl anni ng,
Activity _Server=> Trajectory_Planning)));

Transaction (
Type => Regul ar,
Nane => Li ght _Manager,
Ext ernal _Events => (
(Type => Periodic,
Name => E3,
Period => 100000)),
I nternal _Events => (
(Type => regqular,
name => (O3,
Ti m ng_Requi renents => (
Type => Hard_d obal Deadl i ne,
Deadl i ne => 100000,
ref erenced_event => E3))),
Event _Handl ers => (
(Type => System Ti nmed_Activity,
| nput _Event => E3,
Cut put _Event => (O3,
Activity_ Operation => Light_Manager,
Activity_ Server=> Light_ Manager)));

Transaction (

Type => Regul ar,
Nane => Reporter,

Description of the MAST Model- 31/10/02 - Page 45



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Ext ernal _Events => (
(Type => Periodic,
Name => E4,
Peri od => 1000000)),
I nternal _Events => (
(Type => regqular,
name => O4,
Ti m ng_Requi renents => (
Type => Hard_d obal Deadl i ne,
Deadl i ne => 1000000,
ref erenced_event => E4))),
Event _Handl ers => (
(Type => System Ti nmed_Activity,
| nput _Event => E4,
Cut put _Event => 4,
Activity_Operation => Reporter,
Activity Server=> Reporter)));

Transaction (
Type => Regul ar,

Nane => Message_Logger,

Ext ernal _Events => (
(Type => Unbounded,
Name => E5,

Avg I nterarrival => 1000000)),
I nternal Events => (
(Type => regqular,
name => B)),
Event _Handl ers => (
(Type => Activity,
| nput _Event => ES5,
CQut put _Event => (b,
Activity_Operation => Message_Logger,
Activity_Server=> Message_Logger)));

11. Example of Linear_Transactions: RMT

The following example will show the aspect of the MAST file format that has been chosen to
represent the timing behavior of real-time applications. The example isasimplification of the
control system of ateleoperated robot. Thisisadistributed system with two specialized nodes:
alocal robot controller, and aremote teleoperation station, where the operator manipul ates the
controls, and gets information about the system status. Figure 7 shows a diagram of the
software architecture. The system has three transactions; one of them, the main control loop,
implies execution in different processing resources, and has a global end-to-end deadline.
Communication is through an ethernet network used in master-slave mode to achieve hard real -
time behavior.

Inthe MAST description we can seethat we declare, in this order, the processing resources, the
scheduling servers, the shared resources, the operations, and finaly, the transactions. The
timing requirements are embedded in the events described in the transactions. The timers (and

Description of the MAST Model- 31/10/02 - Page 46



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Teleoperation Station Ethernet Network Local Controller
50ms
Trajectory Command Command 5ms
1sec Planner L Message L Manager (\
(_‘k } Servo
GUI v Control
Reporter Status Data
-4 Message | % Sender

Figure 7. Architecture of the teleoperated robot controller

also the network drivers) are embedded in the description of the processing resources. The
scheduling parameters are embedded in the description of the scheduling servers. Findly, the
events and event handlers are embedded in the description of the transactions. The description
Is shown next:

-- Real -Time Situation
Model (
Mbdel _Name=> RM,
Model _Dat e=> 2002-11-23T10: 22: 33);

-- Processing Resources

Processi ng_Resource (

Type => Fixed Priority_ Processor,
Nane => Tel eoperation_Station,
Worst _Context_Switch => 102.5,
System Ti ner =

(Type => Al arm C ock,

Wor st _Over head=> 50));

Processi ng_Resource (

Type => Fixed_Priority_Processor,
Nane => Local _Controller,
Wor st _Context _Switch => 15,
System Ti ner =>

(Type => Al arm Cl ock,

Wor st _Over head=> 10));

Processi ng_Resource (

Type => Fi xed_Priority_Network,
Narme => Et hernet,
Transni ssi on => Hal f _Dupl ex) ;

-- Scheduling Servers
Schedul i ng_Server (

Type => Fixed_Priority,
Narme => Servo_Control,

Description of the MAST Model- 31/10/02 - Page 47



Server _

Server _

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Sched_Par anet ers=> (

Type => Fixed_Priority_policy,
The_Priority => 415),

Processi ng_Resource=> Local _Controller);

Schedul i ng_Server (

Type
Nane

Server _

Server _

=> Fixed_Priority,

=> Conmand_Manager
Sched_Par anet er s=> (
Type => Fixed_Priority_policy,
The _Priority => 412),
Processi ng_Resource=> Local _Controller)

Schedul i ng_Server (

Type
Name

Server _

Server _

=> Fixed_Priority,

=> Dat a_Sender,
Sched_Par anmet er s=> (
Type => Fixed_Priority_policy,
The_Priority => 410),
Processi ng_Resource=> Local Controller);

Schedul i ng_Server (

Type
Name

Server _

Server _

=> Fixed Priority,

=> Traj ectory_Pl anner,
Sched_Par anmet ers=> (
Type => Fixed_Priority _policy,
The_Priority => 80),
Processi ng_Resource=> Tel eoperation_Station);

Schedul i ng_Server (

Type
Nane

Server _

Server _

=> Fixed_Priority,

=> Reporter,
Sched_Par anmet er s=> (
Type => Fixed_Priority_policy,
The_Priority => 79),
Processi ng_Resource=> Tel eoperation_Station);

Schedul i ng_Server (

Type
Nanme

Server _

Server _

=> Fixed_Priority,

= U,
Sched_Par anet er s=> (
Type => Fixed_Priority_policy,

The_Priority => 60),
Processi ng_Resource=> Tel eoperation_Station);

-- Message schedul er

Schedul i ng_Server (

Type
Nane

Server _

=> Fixed_Priority,
=> Message_Schedul er
Sched_Par anmet er s=> (

Description of the MAST Model- 31/10/02 - Page 48



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Type => Fixed_Priority_policy,
The_Priority => 1),
Server _Processi ng_Resour ce=> Et hernet);

-- Resources

Shar ed_Resource (
Type => | mmedi ate_Cei |l i ng_Resour ce,
Nane => Status);

Shar ed_Resource (
Type => | mmedi ate_Cei |l i ng_Resour ce,
Nane => Conmands) ;

Shar ed_Resource (
Type => | mmedi ate_Cei |l i ng_Resour ce,
Nane => Servo_Data);

-- Operations

-- Critical Sections

Operation (
Type => Sinple,
Nane => Read_St at us,

Wor st _Case_Execution_Tinme => 87,
Shared_Resources_Li st=> (Status));

Operation (
Type => Sinple,
Nane => Wite_Status,

Wor st _Case_Execution_Ti me => 54,
Shared_Resources_Li st=> (Status));

Operation (
Type => Sinple,
Nane => Set _Command,

Wor st _Case_Execution_Tinme => 135,
Shar ed_Resources_Li st=> (Commands)) ;

Operation (
Type => Sinple,
Nane => Get _Command,

Wor st _Case_Execution_Tinme => 99,
Shar ed_Resources_Li st=> (Commands)) ;

Operation (
Type => Sinple,
Nane => Read_Servos,

Wor st _Case_Execution_Tinme => 74,
Shar ed_Resources_List=> (Servo_Data));

Description of the MAST Model- 31/10/02 - Page 49



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Operation (
Type => Sinple,
Nane => Wite_Servos,

Wor st _Case_Execution_Tinme => 71,
Shared_Resources_List=> (Servo_Data));

-- Encl osing operations

Operation (
Type => Encl osi ng,
Nane => Conmand_Manager,

Wor st _Case_Execution_Ti ne => 9045,
Conposite_Operation_List =>
(Wite_Servos));

Operation (
Type => Encl osi ng,
Nane => Dat a_Sender,

Wor st _Case_Execution_Tine => 1220,
Conposite_Operation_List =>
(Read_Servos));

Operation (
Type => Encl osi ng,
Nane => Servo_Control,

Wor st _Case_Execution_Tinme => 1019,
Conposite_Operation_List =>
(Read_Servos, Wite_Servos));

Operation (
Type => Encl osi ng,
Nane => Trajectory_Pl anner,

Wor st _Case_Execution_Tine => 7952,
Conposite_Operation_List =>
(Get _Conmand) ) ;

Operation (
Type => Encl osi ng,
Nanme => Reporter,

Wor st _Case_Execution_Ti ne => 2086,
Conposite_Operation_List =>
(Wite_Status));

Operation (
Type => Encl osi ng,
Nanme => G,
Wor st _Case_Execution_Tinme => 146820,
Conposite_Operation_List =>
(Read_St at us, Set _Conmand) ) ;

Description of the MAST Model- 31/10/02 - Page 50



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

-- Network operations

Operation (

Type => Sinpl e,
Nane => Conmand_Message,
Wor st _Case_Execution_Ti ne => 4850);

Operation (

Type => Sinpl e,

Nane => St at

us_Message,

Wor st _Case_Execution_Ti ne => 5080);

-- Transactions

Transaction (

Type => Regul ar,
Nane => Servo_Control,
Ext ernal _Events => (

(Type
Name

=> Peri odi c,
=> E1,

Peri od => 5000)),
I nternal _Events => (

(Type
nane
Ti

Event _Handl ers
(Type

I nput _

Cut put
Acti vi
Acti vi

Transaction (

=> regul ar,

=> (1,

m ng_Requirenments => (

Type => Hard_d obal _Deadl i ne,
Deadl i ne => 5000,
referenced_event => El1))),

= (

=> System Tinmed_Activity,

Event => EI1,

_Event => Q1,

ty Operation => Servo_Control,
ty_Server=> Servo_Control)));

Type => Regul ar,
Nanme => Mai n_Control _Loop,
Ext ernal _Events => (

(Type
Nane

=> Peri odi c,
= E2,

Peri od => 50000)),
I nternal _Events => (

(Type
nane
(Type
nane
(Type
nane

=> regul ar,
= ),
=> regul ar,
= B3),
=> regul ar,
=> 04),

Description of the MAST Model- 31/10/02 - Page 51



Grupo de Computadoresy Tiempo Real

(Type => regular,
nane => (b),
(Type => regqular,
name => 6),
(Type => regular,
name => O7,
Ti m ng_Requi renents => (
Type => Hard_d obal _Deadl i ne,
Deadl i ne => 50000,
referenced_event => E2))),
Event _Handl ers => (
(Type => System Ti med_Activity,
| nput _Event => E2,
CQut put _Event => Q2,
Activity_Operation => Trajectory_Pl anner,
Activity_Server=> Trajectory_Pl anner),
(Type => Activity,
| nput _Event => O2,
Cut put _Event => (O3,
Activity Operation => Comuand_Message,
Activity_Server=> Message_Schedul er),
(Type => Activity,
| nput _Event => O3,
Cut put _Event => 4,
Activity_Operation => Command_Manager,
Activity_ Server=> Conmand_Manager),
(Type => Activity,
| nput _Event => O4,
CQut put _Event => b,
Activity_Operation => Dat a_Sender,
Activity_Server=> Dat a_Sender),
(Type => Activity,
| nput _Event => 05,
Cut put _Event => 06,
Activity Operation => Status_Message,
Activity_Server=> Message_Schedul er),
(Type => Activity,
| nput _Event => 06,
Cut put _Event => O7,
Activity_Operation => Reporter,
Activity Server=> Reporter)));

Transaction (
Type => Regul ar,
Name => G,
Ext ernal _Events => (
(Type => Periodic,
Name => E3,
Peri od => 1000000)),
I nternal _Events => (
(Type => regqular,

Description of the MAST Model- 31/10/02 - Page 52

Universidad de Cantabria



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

name => (8,
Ti m ng_Requi renents => (
Type => Hard_d obal Deadl i ne,
Deadl i ne => 1000000,
ref erenced_event => E3))),
Event _Handl ers => (
(Type => System Ti nmed_Activity,
| nput _Event => E3,
Cut put _Event => (8,
Activity Operation => CGU,
Activity Server=> GUI)));

12. Example of Multiple Event_Transactions

Example of steel bars inspection:

7 /. /ﬂ/ 7

Bus 10

—

Processor] Computer = |

Ultrasonic

S — Robot

Controller

Description of the MAST Model- 31/10/02 - Page 53



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Software Architecture for this example:

Procuessor 1 Proccessor 2 Processor 3
Imawe 1
3 Acq. 1\ v| AcL |
e
Image 2 act. 2

—_—— A2

Ll . » Al 3
- Irasome:
Sensor /
AN e B T
@—> Act. 4

| Tazk

Multiple event synchronization model for this example:

Sl
+ tl I m2

AN

Description of the MAST Model- 31/10/02 - Page 54



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Graph for the example:

AO1 AO7
EIM1
AO3 ACT1l i —m
—»|ACQL (M1 \ ARI AOS AOG ARZ/
4_4 I1LN |—m»|PRO1l /M3 [—p{O1 N[ +
AO2 AR3\‘ AOS
EIM2 AO4 ACT2|—»
—» | ACQ2[—P|M2
AO12 AO14
M5 |——{ACT3|—p

AR4
EUS AO9 AO10 AO11

—p|ACQ3|—p|M4 | | PRO2.—p{ON_N| «

\ AO13 AO15
AR5 M6 - ACT4—B~

Input Filefor the Multiple-Event Example

-- Real -Time System Model for the Exanple

-- Al the timng requirenents are gl obal deadlines
-- 5 Processing resources

-- 0 Data resources

-- 15 QOperations

-- 15 Schedul i ng Servers

-- 2 Transactions

- - 1 --> 2 External Events

- - 11 Internal _Events

- - 10 Event Handlers (8 Activities, 2 others)
- - 2 --> 1 External Event

-- 9 Internal Events

- - 8 Event Handlers (7 Activities, 1 other)

-- Real -Time Situation

Model (
Model _Name=> St eel _Bars_I nspecti on,
Model _Dat e=> 2001-09- 12T20: 21: 45) ;

-- Resources

Processi ng_Resource (

Type => Fixed_Priority_Processor,
Narme => Processor_1,

Wor st _Context _Switch => 50,

Avg_Context_Swi tch => 15,

Best _Context_Switch => 10);
Processi ng_Resource (
Type => Fixed_Priority_Processor,

Name => Processor_2,

Description of the MAST Model- 31/10/02 - Page 55



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Wor st _Context_Switch => 50,
Avg Context _Switch => 150,
Best _Context_Switch => 10);

Processi ng_Resource (
Type => Fixed_Priority_ Processor,
Narme => Processor_3,
Wor st _Context _Switch => 50,
Avg_Context_Swi tch => 150,
Best _Context_Switch => 10);

Processi ng_Resource (
Type => Fixed_Priority_ Processor,
Nanme => Processor_4,
Wor st _Context _Switch => 50,
Avg _Context_Switch => 150,
Best _Context _Switch => 10);

Processi ng_Resource (

Type => Fixed_Priority_Network,
Name => Net wor k,
Max_Packet _Transm ssion_Ti ne => 100);

-- Operations

Operation (
Type => Sinpl e,
Nane => ACQ1,
Wor st _Case_Execution_Ti ne => 50,
Avg_Case_Execution_Ti ne => 50,
Best _Case_Execution_Ti ne => 50);
Operation (
Type => Sinmpl e,
Narme => ACQ2,
Wor st _Case_Execution_Tinme => 50,
Avg Case_Execution_Ti ne => 50,
Best Case_ Execution_Tine => 50);
Operation (
Type => Sinpl e,
Name => ACQ,
Wor st _Case_Execution_Ti ne => 820,
Avg Case_Execution_Ti ne => 820,
Best Case Execution_Tine => 820);
Operation (
Type => Sinpl e,
Nanme => PROL,
Wor st _Case_Execution_Ti ne => 100,
Avg_Case_Execution_Ti ne => 100,

Description of the MAST Model- 31/10/02 - Page 56



Best _Case_Execution_Ti ne

Operation (
Type
Nanme
Wor st _Case_Execution_Tinme
Avg Case_Execution_Ti ne
Best _Case_ Execution_Ti ne

Operation (
Type
Nane
Wor st _Case_Execution_Ti ne
Avg Case_Execution_Ti ne
Best Case_ Execution_Tine

Operation (
Type
Name
Wor st _Case_Execution_Ti ne
Avg_Case_Execution_Ti ne
Best _Case_Execution_Ti ne

Operation (
Type
Nanme
Wor st _Case_ Execution_Tine
Avg Case_Execution_Ti ne
Best Case_ Execution_Tine

Operation (
Type
Name
Wor st _Case_Execution_Ti ne
Avg Case_Execution_Ti ne
Best Case Execution_Tine

Operation (
Type
Nane
Wor st _Case_Execution_Ti ne
Avg_Case_Execution_Ti nme
Best _Case_Execution_Ti ne

Operation (
Type
Nanme
Wor st _Case_Execution_Tinme
Avg Case_Execution_Ti ne
Best _Case_ Execution_Tine

100) ;

Si nmpl e,
PRO2,
750,
750,
750) ;

Si mpl e,
ACT1,
100,
100,
100);

Si nmpl e,
ACT2,
100,
100,
100);

Si nmpl e,
ACT3,
725,
725,
725);

Si npl e,
ACT4,
740,
740,
740);

Si mpl e,
ML,
100,
100,
100);

Si npl e,

100,

100,
100) ;

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Description of the MAST Model- 31/10/02 - Page 57



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Operation (
Type => Sinpl e,
Name => M,
Wor st _Case_Execution_Ti ne => 50
Avg Case_Execution_Ti ne => 50,
Best Case_ Execution_Tine => 50);
Operation (
Type => Sinple,
Name = W,
Wor st _Case_Execution_Ti ne => 150
Avg_Case_Execution_Ti ne => 150,
Best _Case_Execution_Tine => 150);
Operation (
Type => Sinpl e,
Narnme => Mb,
Wor st _Case_Execution_Tinme => 230,
Avg Case_Execution_Ti ne => 230,
Best _Case_ Execution_Tine => 230);
Operation (
Type => Sinpl e,
Name => Mg,
Wor st _Case_Execution_Ti ne => 250,
Avg Case_Execution_Ti ne => 250,
Best Case Execution_Tine => 250);

-- Scheduling Servers

Schedul i ng_Server (

Type => Fixed Priority,
Nane => SACQ1L,
Server _Sched_Par anet ers = (

Type => Fixed Priority Policy,

The_Priority => 1),
Server _Processi ng_Resource => Processor_1);

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => SACQ2,
Server _Sched Paraneters = (

Type => Fixed_Priority_ Policy,

The_Priority => 2),
Server _Processi ng_Resource => Processor_1);

Schedul i ng_Server (

Type => Fixed_Priority,
Name => SACQ3,
Server _Sched_Par aneters => (

Type => Fixed_Priority_ Policy,

Description of the MAST Model- 31/10/02 - Page 58



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

The_Priority => 3),
Server _Processi ng_Resource => Processor_1);

Schedul i ng_Server (

Type => Fixed Priority,
Name => SPRQCL,
Server _Sched_Par anet ers = (

Type => Fixed_Priority Policy,

The_Priority => 1),
Server _Processi ng_Resource => Processor_2);

Schedul i ng_Server (

Type => Fixed_Priority,
Name => SPRCO2,
Server _Sched Paraneters = (

Type => Fixed_Priority_ Policy,

The_Priority => 2),
Server _Processi ng_Resource => Processor_2);

Schedul i ng_Server (

Type => Fixed_Priority,
Name => SACT1,
Server _Sched_Par aneters => (

Type => Fixed_Priority_ Policy,

The_Priority => 1),
Server _Processi ng_Resource => Processor_3);

Schedul i ng_Server (

Type => Fixed Priority,
Name => SACT2,
Server _Sched_Par anet ers = (

Type => Fixed _Priority Policy,

The_Priority => 1),
Server _Processi ng_Resource => Processor_4);

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => SACTS3,
Server _Sched Paraneters = (

Type => Fixed_Priority_Policy,

The_Priority => 2),
Server _Processi ng_Resource => Processor_4);

Schedul i ng_Server (

Type => Fixed_Priority,
Name => SACT4,
Server _Sched_Par aneters => (

Type => Fixed_Priority_ Policy,

The_Priority => 2),
Server _Processi ng_Resource => Processor_3);

Description of the MAST Model- 31/10/02 - Page 59



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Schedul i ng_Server (

Type => Fixed Priority,
Name => SML,
Server _Sched_Par anet ers = (

Type => Fixed_Priority Policy,

The_Priority => 1),
Server _Processi ng_Resource => Network);

Schedul i ng_Server (

Type => Fixed_Priority,
Narme => S\,
Server _Sched Par aneters = (

Type => Fixed_Priority Policy,

The_Priority => 3),
Server _Processi ng_Resource => Network);

Schedul i ng_Server (

Type => Fixed_Priority,
Name => SMB,
Server _Sched_Par anet ers => (

Type => Fixed_Priority_Policy,

The_Priority => 2),
Server Processi ng_Resource => Network);

Schedul i ng_Server (

Type => Fixed Priority,
Name => SM4,
Server _Sched_Par anet ers = (

Type => Fixed_Priority Policy,

The Priority => 4),
Server _Processi ng_Resource => Network);

Schedul i ng_Server (

Type => Fixed_Priority,
Nanme => SMpb,
Server _Sched Paraneters = (

Type => Fixed_Priority_Policy,

The_Priority => 5),
Server _Processi ng_Resource => Network);

Schedul i ng_Server (

Type => Fixed_Priority,
Name => SMp,
Server _Sched_Par aneters => (

Type => Fixed_Priority_ Policy,

The_Priority => 6),
Server Processi ng_Resource => Network);

-- Transactions

Transaction (

Description of the MAST Model- 31/10/02 - Page 60



Type => Regul ar,

Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Nanme => Transl,
Ext ernal _Events => (
(Type => Peri odi c,
Name => ElI ML,
Peri od => 1000,
Max_Jitter = 0,
Phase => 0),
(Type => Peri odi c,
Name => El M,
Peri od => 1000,
Max_Jitter = 0,
Phase => 0)),
I nternal Events => (
(Type => regqular,
nanme => AOl),
(Type => regular,
name => AQ2),
(Type => regular,
nane => AMR),
(Type => regqular,
name => AO4),
(Type => regul ar,
name => AODH),
(Type => regular,
nane => AMG),
(Type => regul ar,
name => AO7,
Ti m ng_Requi renent s = (
Type => Conposite,
Requi renent s_Li st = (
(Type => Hard_d obal _Deadl i ne,
Deadl i ne => 1000,
referenced_event => EI M),
(Type => Hard_d obal _Deadl i ne,
Deadl i ne => 1000,
referenced_event => EIM2)))),
(Type => regul ar,
name => AQ8,
Ti m ng_Requi renent s = (
Type => Conposite,
Requi renment s_Li st = (
(Type => Hard_d obal _Deadl i ne,
Deadl i ne => 1000,
referenced_event => EI M),
(Type => Hard_d obal _Deadl i ne,
Deadl i ne => 1000,
referenced_event => EIM2)))),
(Type => regular,
nane => ARl),
(Type => regqular,

Description of the MAST Model- 31/10/02 - Page 61



nanme => AR2),
(Type

nane => AR3)),

Event _Handl ers => (

(Type

I nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

| nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

| nput _Event

CQut put _Event

Activity_Operati

Activity_Server
(Type

I nput _Event

Cut put _Event

Activity Operati

Activity_Server
(Type

| nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

| nput _Event

CQut put _Event

Activity_Operati

Activity_Server
(Type

I nput _Event

Cut put _Event

Activity Operati

Activity_Server
(Type

| nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

Cut put _Event

=> regul ar,

on

on

on

on

on

on

on

on

| nput _Events_Li st

(Type
I nput _Event

Description of the MAST Model- 31/10/02 - Page 62

=>

Grupo de Computadoresy Tiempo Real

Activity,
El ML,
ACL,
ACQL,
SACQL) ,
Activity,
El M2,
AQ2,
ACQZ,
SACQ2) ,
Activity,
ACL,

ACB,

ML,

SML) ,
Activity,
A2,

A4,

M,

swe),
Activity,
AR1,

ACS,
PROL,
SPRQOL) ,
Activity,
A5,

ACB,

VB,

SMB) ,
Activity,
AR2,

AO7,
ACT1,
SACT1),
Activity,
AR3,

AC8,
ACT2,
SACT2) ,
Concentrator,
AR1,

(

AGB,
AA) ),

=> Delivery_Server,

=>

AGS,

Universidad de Cantabria



Grupo de Computadoresy Tiempo Real
Universidad de Cantabria

Qut put _Events_List => (

AR2,
AR3))));
Transaction (
Type => Regul ar,
Name => Trans2,
Ext ernal _Events =>(
(Type => Peri odi c,
Name => EUS,
Peri od => 1000,
Max_Jitter = 0,
Phase => 0)),
I nternal _Events => (
(Type => regqular,
name => A09),
(Type => regular,
nanme => ACL0),
(Type => regqular,
nanme => AOl1),
(Type => regqular,
name => A(O12),
(Type => regul ar,
name => AQL3),
(Type => regul ar,
name => AOl4,
Ti m ng_Requi renents = (
Type => Hard_d obal _Deadl i ne,
Deadl i ne => 10000,
referenced_event => EUS)),
(Type => regul ar,
name => ACL5,
Ti m ng_Requi renents = (
Type => Hard_d obal _Deadl i ne,
Deadl i ne => 10000,

referenced_event => EUS)),
(Type => regular,
nane => AR4),
(Type => regqular,
nane => AR5)),
Event _Handl ers => (

(Type => Activity,
| nput _Event => EUS,
Qut put _Event => AQ09,
Activity_Operation => ACQ,
Activity_Server => SACR),
(Type => Activity,
I nput _Event => ACO,
Cut put _Event => AQ010,
Activity Operation => M,
Activity_Server => SM4),

Description of the MAST Model- 31/10/02 - Page 63



(Type

| nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

I nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

I nput _Event

Cut put _Event

Activity_ Operati

Activity_Server
(Type

| nput _Event

Cut put _Event

Activity_Operati

Activity_Server
(Type

| nput _Event

CQut put _Event

Activity_Operati

Activity_Server
(Type

I nput _Event

Qut put _Events_Li

Description of the MAST Model- 31/10/02 - Page 64

on

on

on

on

on

st

Activity,
AQL0,
AOL1,
PRO2,
SPRO2) ,
Activity,
AR4,
AQ12,

Mb,

SMWb) ,
Activity,
AR5,
AQL3,

NG,

SMB) ,
Activity,
AQ12,
AQ14,
ACT3,
SACT3),
Activity,
AQL3,
AQL5,
ACT4,
SACT4) ,
Mul ti cast,
AOL1,

(

AR4,
AR5))));

Grupo de Computadoresy Tiempo Real

Universidad de Cantabria



