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1. Introduction

The MAST toolset contains several schedulability analysis tools capable of analysing single 
processor and distributed systems scheduled with fixed priority, EDF, and EDF within 
priorities scheduling policies. The tools are based on different scheduling analysis techniques 
published in the literature:

• Classic RM Analysis. This analysis implements the classic exact response time analysis 
for single-processor fixed-priority systems first developed by Harter [3] and Joseph and 
Pandya [7], and later extended by Lehoczky to handle arbitrary deadlines [9] and by 
Tindell to handle jitter [26]. It corresponds to Technique 5, “Calculating response time 
with arbitrary deadlines and blocking”, in [8].

• Varying Priorities Analysis. This analysis implements the response time analysis for 
single processor fixed priority systems in which tasks may explicitly change their 
priorities, developed by González, Klein and Lehoczky [4]. It corresponds to Technique 
6, “Calculating response time when priorities vary”, in [8].

• EDF Monopocessor Analysis. This analysis implements the exact response time analysis 
for single-processor EDF systems first developed by Spuri [23]. In the MAST 
implementation we use the EDF Within Priorities (see below), because there may be 
interrupt service routines (modelled as fixed priority tasks) in addition to the EDF tasks.

• EDF Within Priorities Analysis. This analysis is a mixture of the response time analysis 
for fixed priority systems [8][9][26] and for EDF [23]. It is capable of analysing systems 
with hierarchical schedulers, in which the underlying primary scheduler is based on fixed 
priorities, and there may be other EDF (secondary) schedulers scheduling tasks at a 
given priority level. It was developed by González and Palencia [5].

• Holistic Analysis. This analysis extends the response time analysis to multiprocessor and 
distributed systems. It was first developed for fixed priority systems by Tindell and Clark 
[26][27] and refined by Palencia et al [12]. Later, Spuri [24] extended it to EDF systems. 
It is not an exact analysis, because it makes the assumption that tasks of the same 
transaction are independent.

• Offset Based Analysis. This is a response time analysis for multiprocessor and distributed 
systems that greatly improves the pessimism of the holistic analysis by taking into 
account that tasks of the same transaction are not independent, through the use of offsets. 
Offset based analysis for fixed priorities was first introduced by Tindell [28] and then 
extended to distributed systems by Palencia and González [13]. It was later extended to 
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EDF systems by Palencia and González [15]. Although it provides much better results 
than the holistic analysis, it is not an exact method because the exact analysis is 
intractable.

• Optimized Offset Based Analysis. This is an enhancement of the offset based analysis for 
fixed priority systems in which the priorities of the tasks of a given transaction are used 
together with the precedence relations among those tasks to provide a tighter estimation 
of the response times. It was developed by Palencia and González [14], and later 
enhanced by Redell [18].

The MAST toolset is able to automatically calculate the blocking times caused by mutual 
exclusion synchronization. The model includes shared resources with the immediate ceiling 
[2], priority inheritance [21], and stack resource [2] synchronization protocols. It also allows 
mixtures of these protocols and their use in multiprocessor systems [16][17], with some 
restrictions that are described below. For the basic priority inheritance, Rodríguez and García 
[19] showed that most implementations do not strictly follow the rules in [21], and that the 
amount of blocking is usually higher than that predicted by the theory. In MAST we take this 
into account when calculating the blocking times due to the use of the priority inheritance 
protocol.

The MAST toolset also contains tools to automatically assign priorities and other scheduling 
parameters. Priority assignment tools are provided for single-processor and distributed 
systems. In single-processor systems, if deadlines are within the periods the optimum deadline 
monotonic priority assignment developed by Leung and Layland is used [10]. The Liu and 
Leyland classic rate monotonic priority assignment for the case of deadlines equal to the 
periods [11] is know to be a special case of the deadline monotonic assignment. When 
deadlines are larger than the task periods, the optimum priority assignment developed by 
Audsley is used [1]. This technique is based on the iterative use of the schedulability analysis 
tools for different solutions, until a schedulable solution is obtained. 

In multiprocessor and distributed systems the problem of assigning priorities is much harder, 
as there are strong interrelations between the response times in the different resources. We 
provide two heuristic solutions based on iteratively applying the schedulability analysis tools. 
The first one is based on the use of the simulated annealing optimization techniques first used 
by Tindell, Burns, and Wellings for assigning priorities [1]. The second heuristics, which 
usually provides better and faster results is the HOPA algorithm developed by Gutiérrez and 
González [6].

The MAST toolset is able to determine not only whether the system is schedulable or not, but 
also how far it is from being schedulable, or how much capacity is available until the system 
becomes unschedulable. It does so by calculating slacks, which are defined as the percentage 
by which we can increase the execution times of some operations while keeping the system 
schedulable (for positive slacks) or the percentage by which we have to decrease the execution 
times to make the system schedulable (for negative slacks). A slack of zero means that the 
system is just schedulable, and that even the smallest increment in the execution times would 
lead to non schedulability. There are different kinds of slacks provided:

• System slack: affects all the operations in the system

• Processing resource slack: affects only the operations executed in a given processing 
resource

• Transaction slack: affects only the operations used in a given transaction
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• Operation slack; affects only one single operation

The slacks are calculated by modifying the worst-case execution times and repeating the 
analysis using a binary search to find the point in which the system becomes unschedulable (or 
schedulable if it wasn’t). The slack is calculated with a 1% precision to limit the amount of 
times the analysis is repeated to around 20 times.

In addition to these tools, some additional analysis techniques were needed to develop the 
MAST toolset, because it allows combinations of scheduling policies and synchronization 
protocols that did not have a global treatment in the published analysis techniques that we 
know about. This document describes these additional extensions that were specifically 
developed for MAST.

2. Calculating Blocking Times

In addition to the preemption and self execution effects, the response time of a given task has 
to include the effects of blocking delays caused by lower priority tasks. These delays are 
caused by mutual exclusion synchronization, by the temporary execution of high priority 
sections by the low priority tasks, or by non-preemptible sections, which behave as high 
priority sections of the highest possible priority. Mutual exclusion synchronization can use one 
of the three protocols defined: priority inheritance (PIP) [21], immediate priority ceiling (IPC) 
[2], and stack resource policy (SRP) [2]. Analysis of priority inheritance resources takes into 
account the POSIX implementation, which is known [19] to have a worse blocking time than 
the implementation described in the original paper.

In this section we describe how to calculate the blocking times when all these effects are 
combined, and also when different combinations of synchronization protocols are used. In 
order to simplify the analysis we have made the following restrictions in the current 
implementation of the MAST tools:

• SRP resources are used only by scheduling servers with EDF scheduling parameters.

• PIP resources are used only by scheduling servers with fixed priority scheduling 
parameters.

Therefore, the only protocol that can be used to share information among EDF and fixed 
priority tasks is the immediate priority ceiling. This is also the only protocol allowed for global 
shared resources, i.e., those that can be used from different processing resources.

2.1  Blocking by high priority sections and preemption rules

When analysing the blocking time of a given task segment, one of the possible blocking effects 
is caused by the execution of a high priority section of a lower priority task. Because only one 
of these sections may be executing in the processing resource of the task under analysis when it 
is released, we take the maximum of all these high priority sections of lower priority tasks [2]:

• local critical sections with Immediate Ceiling Protocol and with a ceiling higher than the 
priority of the task under analysis

• global critical sections in the same processor and with Immediate Ceiling Protocol and 
with a ceiling higher than the priority of the task under analysis

• sections with overridden scheduling parameters of priority higher than the task’s priority
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• non-preemptible sections

In [5] we show that in the presence of the SRP protocol, each task may only be delayed by 
either an SRP or an IPC critical section, but not by both. Blocking is cased by local critical 
sections of tasks of the same priority level (in the case of the EDF-within priorities) with a 
preemption level higher than that of the task under analysis. Therefore:

Where Lev(CSlm) is the preemption level of critical section l of task m, and Levi is the 
preemption level of task i. No context switch overhead is added in these cases [2].

2.2  Blocking by Global Critical Sections

Restrictions and assumptions:

• Global critical sections always use the immediate priority ceiling protocol.

• The ceiling has been set high enough to minimize the remote blocking. In particular, we 
limit remote blocking to be caused only by simple tasks (belonging to a transaction with 
a single initial high priority segment), that do not use shared resources. This allows us 
modelling interrupt service routines that cause remote blocking, and that cannot be 
disabled during the critical section execution.

• We will assume that remote blocking is small, and thus we will not consider the 
advantage that the task suspension has for lower priority tasks. In any case we should not 
consider it, because in the worst case suspension would not occur.

Blocking by global critical sections in the same processor as the task under analysis is 
considered as part of the high priority segment blocking. Therefore, we only need to take into 
account critical sections from other processors using the same resource. At first, it seems that 
we should use only one such critical section per processor, given that priority ceiling is being 
used. However, if a critical section from one processor has caused blocking, it is possible for 
that processor to continue executing while another critical section of another processor is 
executing, thus entering a third critical section after the second one has finished. Therefore, for 
the task under analysis we need to take into account the effects of global critical sections for 
each global critical section.

Consequently, we consider two situations:

A. Applicable critical sections belong to only one processor. In this case, only
one such critical section may affect, and it will be calculated as

Bi
ceil max CSkj CSlm,( )

k j∀, Sj FP=( ) Pj Pi<( ) Ceil CSkj( ) Pi≥( )
l m i≠( )∀, Lev CSlm( ) Levi≥( )∀

∧ ∧∀
=
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where Resp(CSj) is the response time of critical section j, given by:

where HL(j) is the set of tasks that start at a priority strictly higher than Pj, but then go 

to low priority; H(j) is the set of tasks that start at a priority strictly higher than Pj; and  

is the length of the H segment of the corresponding task.

B. The applicable critical sections belong to more than one processor. In this
case, all of them could potentially cause remote blocking, and thus we
consider all of them. 

Enhancements possible but not yet implemented:

• Model the remote critical section as a remote procedure call only as a mean of 
calculating the remote blocking for non-simple tasks.

• Study other cases in which not all the considered critical sections can block the same 
task.

2.3  Blocking caused by priority inheritance critical sections

Assumptions

• We only consider local critical sections in fixed priority tasks; global critical sections are 
forced to use immediate ceiling locking, with the appropriate global priority protection. 
EDF tasks will use the SRP or IPC protocols.

Suppose that the task segment under analysis, i, has k critical sections using distinct resources 
r1..rk. If a task segment uses the same resource more than once, it will only suffer one blocking 
from other critical sections with that resource, because to be delayed, the resource mush have 
already been acquired by the lower priority task, and then it is not possible for it to run again 
until segment i finishes [21].

The task may be blocked once at each critical section, by a critical section of another lower 
priority task that is holding the lock [21]. For each critical section l, the delay is equal to the 
longest critical section on rl from lower priority tasks. Since each lower priority task can 
influence with at most one critical section, all combinations may not be possible.

In addition, a task may get push-through blocking, by critical sections of lower priority tasks 
that have a ceiling higher than or equal to that of the task i. In the original priority inheritance 
protocol only one such blocking per lower priority tasks may occur (because after the critical 
section the lower priority task cannot run until task i has completed its execution). However, in 
some implementations of the priority inheritance protocols (for example some POSIX 
implementations) the task under analysis may get delayed by several lower priority tasks [19]. 
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In all implementations only one blocking can occur per shared resource, as the resource must 
have been acquired before the task started to run.

Because a critical section of a lower priority task with enough ceiling can always affect the 
task segment under analysis, either as push-through blocking or as direct blocking, if the 
original priority inheritance protocol was used we count the blocking time using the following 
equation:

But because of the possibility of different implementations, the MAST toolset uses only the 
first term:

A possible enhancement would be to explore less pessimistic approaches by considering that 
not all combinations from lower priority tasks may occur, as shown in [19].

2.4  Total blocking

The total blocking is the addition of all the blocking effects mentioned

3. Calculating Context Switch Overheads

For each task segment that exists between potentially blocking points we need to consider two 
context switches, both for the own’s task analysis, as well as for the analysis of lower priority 
tasks [20]. The easiest is to add the context switches to the execution time of the task.

In addition, we have to take into account the context switches due to synchronization. The 
effects that the context switch overhead of a task that is suspended has on lower priority tasks 
is equal to two context switches per critical section considered. This has to be added to the 
normal two context switches that a task has, as it represents overhead for lower priority tasks.

• For local shared resources using the immediate ceiling or the SRP protocols there are no 
context switch activities due to synchronization [2].

• For local shared resources using the priority inheritance protocol the amount of context 
switches due to synchronization is double the number of critical sections that influence 
blocking [21].

• For global shared resources using the global immediate priority ceiling, the amount of 
context switches is double the number of blockings that the task may suffer [16][17].

Bi
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Therefore, an additional context switch overhead of 2Cs is considered for each segment, as 
additional execution time, and not as additional blocking time. This may introduce a small 
amount of pessimism, because the overhead may not be possible for all periods of a task that 
are considered in the busy period of a lower priority task.
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