
Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Modeling and Analysis Suite for Real Time Applications
(MAST 1.6.0)

Description of the MAST Model

By: José María Drake drakej@unican.es
Michael González Harbour mgh@unican.es
José Javier Gutiérrez gutierjj@unican.es
Patricia López Martínez lopezpa@unican.es
Julio Luis Medina medinajl@unican.es
José Carlos Palencia palencij@unican.es

Copyright  2000-2025 Universidad de Cantabria, SPAIN

1. Introduction

In this document we describe the basic characteristics of MAST, a Modeling and Analysis
Suite for Real-Time Applications. MAST provides an open source set of tools that enable
engineers developing real-time applications to perform schedulability analysis of their
application.

The motivations for developing MAST are mainly that the schedulability analysis techniques
have evolved a lot in the past decade, and in particular for fixed priority scheduled systems,
such as those built with commercial operating systems or commercial languages. Today a full
set of techniques exists for event-driven distributed real-time systems.

The new aspects that cannot be found in other tools that we know about are the following:

• A very rich model of the real time system is used. It is an event-driven model in which
complex dependence patterns among the different tasks can be established. For example,
tasks may be activated with the arrival of several events, or may generate several events
at their output. This makes it ideal for analysing real-time systems that have been
designed using UML or similar design tools, which have event driven models of the
system.

• The latest offset-based analysis techniques are used to enhance the results of the analysis.
These techniques are much less pessimistic than previous schedulability analysis
techniques.

• Schedulers may be composed in a hierarchical way.

• The toolset is open source and fully extensible. That means that other teams may provide
enhancements. The first version was intended for fixed priority systems, and the current
version also supports dynamically scheduled systems.

2. Requirements

When timing requirements must be met even in the worst case conditions, testing methods are
insufficient because there is no guarantee that the worst case was tested. This is why
mathematical methods, called schedulability analyses, are needed to obtain these guarantees.
Description of the MAST Model- 10/2/25 - Page 1

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
As inputs, the analysis needs a model of the timing behaviour of the application and its timing
requirements, together with the worst-case execution times (WCETs) of the different blocks of
sequential code. As a result, schedulability analysis provides the answer to the question: will a
set of dynamically-scheduled concurrent tasks meet its timing requirements under all possible
circumstances?

To create the timing behaviour model we take into account that real-time systems have a
reactive architecture in which software reacts to timing and external workload events,
executing specific tasks in response. Many of these events have a repetitive nature because
tasks have to continuously react to changes in the environment. We also find that many of
these events are periodic, perhaps triggered from a hardware timer, and others are aperiodic,
triggered from a human operator input, a message arriving through a communications network,
or a hardware interrupt generated by a sensor reading a signal from the environment. Tasks
will synchronize among themselves to accomplish a coordinated result and will share
resources in mutual exclusion. In distributed systems, tasks will exchange messages among
them using a communications network. These messages carry information and implement a
control flow by which tasks in one processor may trigger the execution of tasks in other
processors. All these behaviours must be captured in a model of the system that can be used as
input to the schedulability analysis methods.

A simple pass/fail answer from the analysis is generally not enough for the application
developer. If the system meets its timing requirements we would like to know how much space
we have for growth. Similarly, if the system is not schedulable we would like to know where
the timing bottlenecks are, and what parts of our system we can change to achieve
schedulability. These answers can be obtained from a sensitivity analysis.

Real-time systems theory has developed a large number of scheduling policies together with
their corresponding schedulability analysis techniques. Engineers trying to develop industrial
real-time systems need tools that allow them to model their systems and apply these
techniques. MAST was created at the University of Cantabria to serve both as an engineering
tool and as a research platform for developing such modelling techniques and the associated
analysis techniques, focusing on distributed systems.

The main requirements used in the design of MAST were to develop a model to describe
event-driven real time systems, with the following characteristics:

• Open model, that can include new characteristics or viewpoints of the system.

• Should be able to handle most real-time systems built using commercial standard
operating systems and languages (e.g., POSIX and Ada). This implies fixed priority
scheduled systems, but the system should also support other scheduling algorithms (such
as EDF) as well as hierarchical schedulers. Among fixed priorities, different scheduling
strategies should be allowed:

- preemptive and non preemptive

- interrupt service routines

- sporadic servers

- polling

• Should be able to handle distributed systems.
Description of the MAST Model- 10/2/25 - Page 2

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Emphasis is on event-driven systems in which each task may conditionally generate
multiple events at its completion. A task may also be activated by a conditional
combination of one or more events, through the following event handlers:

- concentrator (merge)

- barrier (join)

- delivery_server (branch with decision made by sender) and query_server (branch

with request from receiver)1

- multicast (fork)

• The external events arriving at the system should be of different kinds:

- periodic

- unbounded aperiodic

- sporadic

- bursty

- singular (arriving only once)

• The system model should be rich enough to facilitate the independent description of
overhead parameters such as:

- Processor overheads

- Network overheads

- Network driver overheads

• Timing requirements should be allowed to be both hard and soft. Deadlines as well as
maximum output jitter requirements should be allowed.

• The tool provides the user with capabilities to automatically calculate the following
system parameters:

- optimum priorities

- possibility of deadlocks (not yet implemented)

- priority ceilings and preemption levels for shared resources

- system, transaction or processor slacks (percentage by which the system, processor
or transaction operations may be increased while keeping the system schedulable)

3. MAST Tools

The model is included in a toolset (Figure 1 and Figure 2), with the following elements:

1. Analysis techniques for branch elements are not available for the general case, so these elements are specified
in the MAST model but not allowed by the schedulability analysis tools. They are allowed by the simulator
tool (currently unavailable).
Description of the MAST Model- 10/2/25 - Page 3

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• The model and the results are specified through a test description that serves as the input
and output of the analysis tools. Three text formats have been defined: a special-purpose
format, an special-purpose XML-based format, and an XMI format that conforms with
an ecore metamodel.

• Graphical editors and other tools generate the system using one of these text
descriptions. They can then invoke the analysis tools.

• A parser converts any of the text descriptions of the system into an Ada data structure
that is used by the tools. A module is offered to convert the Ada data structure back into
the chosen text description.

• The XML format provides the designer with capabilities to use free standard XML tools
to validate, parse, analyse, and display the model files.

• A module to generate the models from en Eclipse Ecore model is available, with tools to
transform the real-time system model into the MAST text or XML formats, and the
results of the analysis tools back into an ecore model.

• A results viewer is available to view the analysis results in a convenient way.

The MAST environment will integrate the following tools described in Figure 1:

• The schedulability analysis tools perform different kinds of worst-case analysis to
determine the schedulability of the system. Blocking times relative to the use of shared
resources are calculated automatically.

• The priority assignment tools are able to make an automatic assignment of priorities and
priority ceilings, using optimum priority assignments when available, and heuristics or
optimization techniques when the optimum assignment is not available.

• The Deadline assignment tools are able to make an automatic assignment of deadlines to
the individual tasks of distributed transactions given the end-to-end deadlines that the
transaction must meet.

Figure 1. MAST toolset environment

Design Tools

Model
Data

Analysis Tools

Data Management

MARTE to MAST

Component-based

UML-MAST

Results Viewer

XML Converters

Model
Description

Results
Description

Trace
Log

Tool Launcher

Simulation

Sensitivity Analysis

Priority Assign.

Schedulability
Analysis

Graphical Editor
Description of the MAST Model- 10/2/25 - Page 4

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• The sensitivity analysis tools calculate the system, processing resource or transaction
slacks, which tell the engineer which are the parts of the system that have more space for
growth, or that need to be modified to make the system schedulable. This is done by
repeating the analysis in a binary search algorithm in which execution times are
successively increased or decreased.

• The simulation tools (currently unavailable) are able to simulate the behaviour of the
system to check soft timing requirements and generate temporal traces of the simulated
execution.

Using a standard UML tool, it is possible to describe the real-time behaviour of the system by
means of a set of appropriate UML modelling primitives that are defined in different profiles in
accordance with the technology used to design the real-time system (object oriented, Ada
language, component based, ...). Then, an automatic tool is used to compile the UML real-time
view and to build the MAST real-time model description. No special framework is needed
with this approach, but the designer must incorporate the real-time view into the UML

description. Refer to the UML-MAST project page1 for more information of this issue.

Figure 2 represents the MAST toolset. The capabilities of the currently implemented tools are
represented in the following tables.

1. http://mast.unican.es/umlmast/

Figure 2. MAST Analysis tools

MAST

Parser
Restrictions

& Consistency
Checks

Scheduling

Priority Ceilings

Blocking Times

Schedulability

Print Results

MAST Analysis Tool

System description

MAST
Results

New MAST
System description

Analysis
Parameters
Assignment

Legend

Error flow
Information flow

Analysis flow
Params assignment
Description of the MAST Model- 10/2/25 - Page 5

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
4. Real-Time System Model

A real-time situation is modelled as a set of concurrent transactions that compete for the
resources offered by the platform. Each transaction is activated from one or more external
events, and represents a set of activities that are executed in the system. Activities generate
events that are internal to the transaction, and that may in turn activate other activities. Special
event handling structures exist in the model to handle events in special ways. Internal events
may have timing requirements associated with them.

Figure 3 shows an example of a system with one of its transactions highlighted. Transactions
are represented through graphs showing the event flow. This particular transaction is activated
by only one external event. After two activities have been executed, a multicast event handling
object is used to generate two events that activate the last two activities in parallel.

We call the “boxes” that are included in the transaction Event Handlers. As we have
mentioned, there are event handlers that just manipulate events, like the Multicast event
handler in Figure 3. Another very important event handler is an Activity, which represents the
execution of an operation, i.e., a procedure or function in a processor, or a message
transmission in a network.

The elements that define an activity are described in Figure 4. We can see that each activity is
activated by one input event, and generates an output event when completed. If intermediate
events need to be generated, the activity would be partitioned into the appropriate parts. Each
activity executes an Operation, which represents a piece of code (to be executed on a
processor), or a message (to be sent through a network). An operation may have a list of
Shared Resources that it needs to use in a mutually exclusive way.

Table 1. Fixed-priority schedulability analysis tools

Technique
Single-
Processor

Multi-
Processor

Simple
Transact.

Linear
Transact.

Multipath
Transact.

Classic Rate Monotonic  

Varying Priorities   

Holistic     

Offset Based     

Table 2. EDF schedulability analysis tools

Technique
Single-
Processor

Multi-
Processor

Simple
Transact.

Linear
Transact.

Multipath
Transact.

Single Processor  

EDF_Within_Priorities  

Holistic_Local     

Holistic_Global     

Offset Based    
Description of the MAST Model- 10/2/25 - Page 6

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
The activity is executed by a Scheduling Server, which represents a schedulable entity in the
Scheduler to which it is assigned. This scheduler belongs to a Processor or a Network,
although we will see that when hierarchical scheduling is modelled the situation is somehow
more complex. For example, the model for a scheduling server in a processor is a task or
thread. A thread may be responsible of executing several activities (procedures). The
scheduling server is assigned a Scheduling Parameters object that contains the information on
the scheduling policy and parameters used.

External

Event

Event
Handler

Event
Handler

Event
Handler

Event
Handlers

Activity Activity Multicast

External

Event

Event
Handler

Event
Handler

Event
Handler

Event
Handlers

Activity Activity Multicast

...

Timing
Requirement

Transaction

Transaction

Internal

Event

Figure 3. Real-Time System composed of transactions

Figure 4. Elements that define an activity

Event
Handler

Activity

Timing
Requirement

Operation

Shared
Resources

Scheduling
Server

Scheduler

Scheduling
Parameters

Event Event

Event

Reference

Processing
Resource
Description of the MAST Model- 10/2/25 - Page 7

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Some of the attributes of MAST objects are not part of the real-time model but are information
that is relevant to some of the analysis tools. In that case the attribute name is identified with a
tool-specific prefix. The only prefix that is currently defined is:

• RTA_: This prefix identifies a tool-specific attribute that is applicable only to the worst-
case response time analysis tools.

5. MAST Output Files

The MAST tools produce several output files:

• Console output: Describes the work carried out by the tools, and any possible errors, in
free format. If the verbose option is set, the tools provide a more detailed output. The last
line in the file contains the string “Final analysis status: code”, where code is a single
word that is either “DONE”, or some error indication.

• Source destination file: Describes the source of the MAST model of the analysed system,
including any elements introduced by the analysis tools into the system such as priorities,
or priority ceilings. It follows the file format used for the MAST model. This file is only
produced if the corresponding option is set.

• Results file: Describes the results of the analysis tools. If a filename is not provided for
the results, they are written to the standard output, together with the Console Output. See
Section 10 for a description of its format.

6. Type definitions

The following types are used in the definitions of the components of the MAST File and the
MAST Results File:

• Identifier. String of characters following the rules described in the following section.

• Priority. Positive integer of implementation-defined range, defining the scheduling
priority of tasks.

• Preemption_Level. Natural integer of implementation-defined range, defining the
preemption level of scheduling servers (threads) and shared resources, used in the SRP
protocol for mutually exclusive access to shared resources.

• Interrupt_Priority. Positive integer of implementation defined range, defining the
scheduling priority of interrupt service routines.

• Any_Priority. Positive integer that is either in the Priority range or in the
Interrupt_Priority range.

• Normalized_Execution_Time. Floating point number that represents the amount of
processing resource capacity that is required for the execution of an operation. It is
expressed as the execution time of an operation, when it is executed by a normalized
processing resource of speed factor equal to one. It is obtained by multiplying the real
execution time by the processing resource’s speed factor.

• Bit_Count. Floating point number that represents the length of a message in bits of
information. It is converted to normalized execution time (i.e., transmission time) by
dividing it by the throughput, measured in bits per time unit.
Description of the MAST Model- 10/2/25 - Page 8

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Throughput. Floating point number that represents the transmission bandwidth of a
communication network in bits per time unit.

• Time. Floating point number that represents a time interval in unspecified time units.

• Absolute_Time. Floating point number that represents an absolute time measured from
and arbitrary time origin, in unspecified units.

• Float. It represents any float type.

• Positive. Integer positive number (excluding zero).

• Natural. Integer number that is greater than or equal to zero.

• Percentage. A floating point number representing a percentage, and followed by a “%”
character. In some cases (slacks) the notation “>=num%” may be used to indicate that
the actual result is greater than the specified number.

• “Text”: String of arbitrary characters, excluding the double quote character, and
delimited within double quotes.

• Date-Time: String representing a date and time (hours, minutes and seconds) in the
extended ISO 8601 format with no time zone:
YYYY-MM-DDThh:mm:ss (e.g., 1997-07-16T19:20:30).

• Pathname: String representing a pathname of a file.

7. Writing the MAST File with the special-purpose format

The MAST Model can be specified using a special-purpose text format or an XML file. This
section defines the special-purpose text format. In Appendix A, we describe the syntax and
rules for writing the Mast files with the XML-Mast format.

The rules for writing the file with a real-time system according to the defined real-time system
model are the following:

• Each object has the format:
object_name (arguments);

• Most objects have a type and/or a name argument. In those cases, they are mandatory
arguments, and they have to be defined as the first and second argument, respectively.
All other arguments can go in any order, and are optional, except when marked.

• Blank spaces, tabs and new lines are ignored.

• Identifiers or names follow the Ada rules for composite identifiers: begin with a letter,
followed by letters, digits, underscores (’_’) or periods (’.’).

• Identifiers or names can be expressed with or without quotes. A quoted name can be the
same as one of the reserved words (appearing in bold face below).

• Float types without fractional part can be expressed without the decimal point.

• Comments are like in Ada: they begin with two dashes ("--"), anywhere in a line, and end
at the end of the line.

• The description is not case-sensitive.
Description of the MAST Model- 10/2/25 - Page 9

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
There is now need to define an identifier before it is used, as opposed to what happened in
previous versions.

8. Elements of the MAST model

In this section we review in detail the particular classes and attributes of the different elements
of the MAST model. The elements that we will review are:

• Processing Resources

• System Timers

• Network Drivers

• Schedulers (primary scheduler, secondary schedulers,....)

• Scheduling Policies (fixed priorities, EDF,...)

• Scheduling parameters (priorities, deadlines,...)

• Synchronization parameters (preemption levels,...)

• Scheduling Servers (tasks, processes, threads,...)

• Shared resources (for mutually exclusive access)

• Operations (procedures, functions, messages,...)

• Events

• Timing Requirements

• Event Handlers

• Transactions

• Overall system model

8.1 Processing Resources

They model the processing capacity of a hardware component that executes some of the
modelled system activities, which are generally pieces of code or messages to be transferred.

Common attributes:

• Name. A string.

• Speed factor. All execution times will be expressed in normalized units. The real
execution time is obtained by dividing the normalized execution time by the speed factor.
The default value is 1.0.

Classes of Processing Resources: there is an abstract class, called Processor, that models a
device capable of executing pieces of application code; another abstract class, called Network,
models a communication system specialized in the transmission of messages among
processors. One concrete class is defined for each of these abstract resources:

• Regular Processor1. It represents a physical processor with the basic overheads
associated with its hardware interrupt services. It has the following additional attributes:
Description of the MAST Model- 10/2/25 - Page 10

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
- Max Interrupt priority and Min Interrupt priority. They define the range of
priorities valid for activities scheduled by an interrupt service routine. Their
default values are the maximum and minimum values of the Any_Priority type,
respectively.

- ISR Switch Overheads (Worst, Average, Best).

- System Timer. A reference to the hardware system timer used (see below), that
influences the overhead of the System Timed Activities and specifies the processor
overhead implicitly introduced by the scheduler or the operating system to
implement its own time management services. The default value is no system
timer.

Processing_Resource (

Type => Regular_Processor,

Name => Identifier,

Speed_Factor => Float,

Worst_ISR_Switch => Normalized_Execution_Time,

Avg_ISR_Switch => Normalized_Execution_Time,

Best_ISR_Switch => Normalized_Execution_Time,

Max_Interrupt_Priority => Interrupt_Priority,

Min_Interrupt_Priority => Interrupt_Priority,

System_Timer => System_Timer);

• Packet Based Network1. It represents a network that uses some kind of real time protocol
based on non-preemptible packets for sending messages. There are networks that support
priorities in their standard protocols (i.e., the CAN bus), and other networks that need an
additional protocol that works on top of the standard ones (i.e., serial lines, ethernet). A
network has the following additional attributes:

- Transmission kind: Simplex, Half Duplex, of Full Duplex. The default value is
Half_Duplex.

- Throughput: Normalized network bandwidth in bits per time unit. The actual
network throughput is affected by the Speed Factor. The default value is 0 bits per
time unit.

- Max Blocking. The maximum blocking that may be experienced before a high
priority message can be transmitted, caused by the non preemptability of message
packets, including both the application message and the protocol information sent
with it. It usually has a value equal to the maximum packet transmission time plus
the transmission time of the protocol information. Its default value is zero,
indicating a negligible network blocking.

- Max Packet Size and Min Packet Size. They describe the amount of data included
in a packet, excluding any protocol information. The maximum size is used in the
calculation of the number of packets into which a large message is split, calculated
as the ceiling of the message size divided by the maximum packet size. This
number is multiplied by the packet overhead time of the scheduler to calculate the

1. Another class of processor called the “Fixed_Priority_Processor” is supported. It includes a scheduler with a
fixed priority scheduling policy and is defined only for backwards compatibility with MAST 1.2.

1. Another class of network called the “Fixed_Priority_Network” is supported. It includes a scheduler with a
fixed priority scheduling policy and is defined only for backwards compatibility with MAST 1.2.
Description of the MAST Model- 10/2/25 - Page 11

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
network overhead. The Minimum size is used to calculate the shortest period of the
overheads associated with the transmission of each packet, and thus has a strong
impact on the overhead caused by the network drivers in the processors using the
network. Their default values are the maximum value of the Bit_Count type.

- Max Packet Transmission Time and Min Packet Transmission Time. These
parameters represent another option for specifying the Max Packet Size and the
Min Packet Size, but using time units instead of a bit count. The size is obtained by
multiplying the time by the Throughput. If these parameters appear in the
description, the associated size parameters should not be present. Their default
values are a very large time value.

- List of Drivers. A list of references to network drivers, that contain the processor
overhead model associated with the transmission of messages through the network.
See the description of the drivers below. The default is an empty list.

Processing_Resource (

Type => Packet_Based_Network,

Name => Identifier,

Speed_Factor => Float,

Throughput => Float,

Transmission => Simplex | Half_Duplex | Full_Duplex,

Max_Blocking => Normalized_Execution_Time,

Max_Packet_Size => Bit_Count,

Min_Packet_Size => Bit_Count,

Max_Packet_Transmission_Time => Normalized_Execution_Time,

Min_Packet_Transmission_Time => Normalized_Execution_Time,

List_of_Drivers => (

Driver 1,

Driver 2,

...));

8.2 System Timers

They represent the different overhead models associated with the way the system handles
timed events. There are two classes:

• Alarm Clock. This represents systems in which timed events are activated by a hardware
timer interrupt. The timer is programmed always to generate the interrupt at the time of
the closest timed event. Consequently, each one can have its own interrupt. This
represents an overhead. The attributes are:

- Overhead (worst, average and best). This is the overhead of the timer interrupt,
which is assumed to execute at the highest interrupt priority. Their default values
are zero.

System_Timer = (

Type => Alarm Clock

Worst_Overhead => Normalized_Execution_Time,

Avg_Overhead => Normalized_Execution_Time,

Best_Overhead => Normalized_Execution_Time,
Description of the MAST Model- 10/2/25 - Page 12

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Ticker. This represents a system that has a periodic ticker, i.e., a periodic interrupt that
arrives at the system. When this interrupt arrives, all timed events whose expiration time
has already passed, are activated. Other non timed events are handled at the time they are
generated. In this model, the overhead by the timer interrupt is localized in a single
periodic interrupt, but jitter is introduced in all timed events, because the best resolution
is the ticker period. The attributes are:

- Overhead (worst, average and best). This is the overhead of the timer interrupt,
which is assumed to execute at a priority level higher than the highest interrupt
priority. Their default values are zero.

- Period. Period of the ticker interrupt. Its default value is a very large time.

System_Timer = (

Type => Ticker

Worst_Overhead => Normalized_Execution_Time,

Avg_Overhead => Normalized_Execution_Time,

Best_Overhead => Normalized_Execution_Time,

Period => Time)

8.3 Network Drivers

They represent operations executed in a processor as a consequence of the transmission or
reception of a message or a message packet through a network. We define three classes:

• Packet Driver. Represents a driver that is activated at each message transmission or
reception. Its attributes are:

- Packet server: The scheduling server that is executing the driver (which in turn has
a reference to the processor, and the scheduling parameters), or a reference to it.

- Packet Send Operation. The operation that is executed by the packet server each
time a packet is sent, or a reference to it.

- Packet Receive Operation. The operation that is executed by the packet server
each time a packet is received, or a reference to it.

- Message Partitioning. A “Yes|No” value that determines whether or not the driver
is capable of partitioning long messages into several packets and rebuilding the
message at the other end. This attribute influences the overhead model of the
driver. The default value is “Yes”.

- RTA Overhead Model. This is a tool-specific attribute that applies only to the
worst-case response time analysis tools. A value that determines the overhead
model that should be used for the driver. Currently two values are supported:
coupled or decoupled. In the coupled overhead model a message send and a
message receive operation are attached to the transaction that causes the
transmission. In the decoupled overhead model the send operation and receive
operation are executed periodically, with a period equal to the minimum packet
transmission time (or some other driver-dependent time). Both models are
pessimistic, but the coupled model is more appropriate for systems with low
network utilization, while the decoupled model is more appropriate for systems
with high network utilization and few messages being partitioned (i.e., mostly
short messages). The default value is “Decoupled”.
Description of the MAST Model- 10/2/25 - Page 13

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Driver = (

Type => Packet_Driver,

Packet_Server => Scheduling_Server | Identifier,

Packet_Send_Operation => Operation | Identifier,

Packet_Receive_Operation => Operation | Identifier,

Message_Partitioning => Yes | No,

RTA_Overhead_Model => Coupled | Decoupled)

• Character Packet Driver. It is a specialization of a packet driver in which there is an
additional overhead associated with sending each character, as happens in some serial
lines. Its attributes are those of a packet driver plus the following:

- Character server: The scheduling server that is executing the part of the driver that
is executed for each character sent or received (which in turn has a reference to the
processor, and the scheduling parameters), or a reference to it.

- Character Send Operation. The operation that is executed by the character server
each time a character is sent, or a reference to it.

- Character Receive Operation. The operation that is executed by the character
server each time a character is received, or a reference to it.

- Character Transmission Time. Time of character transmission. It determines the
period used for the overhead models of the character send and character receive
operations.

Driver = (

Type => Character_Packet_Driver,

Packet_Server => Scheduling_Server | Identifier,

Packet_Send_Operation => Operation | Identifier,

Packet_Receive_Operation => Operation | Identifier,

Message_Partitioning => Yes | No,

RTA_Overhead_Model => Coupled | Decoupled,

Character_Server => Scheduling_Server | Identifier,

Character_Send_Operation => Operation | Identifier,

Character_Receive_Operation => Operation | Identifier,

Character_Transmission_Time => Time)

• RT-EP Packet Driver. It is a specialization of a packet driver that characterizes the Real-

Time Ethernet Protocol, RTEP1. This is a token-passing protocol with prioritized
messages, that uses a two-phase mechanism to send each information packet: in first
place there is a priority arbitration phase in which a token is rotated through each station
or processing node to determine which is the node with the highest priority message; in
the second phase that node is granted permission to transmit a packet with information.
Compared to a regular packet driver, there are additional overheads associated with the
transmission and reception of the tokens, as well as with the error recovery mechanisms.
In the Decoupled RTA Overhead Model, the period of the overhead transactions used to
model the message send and receive operations is not the minimum packet transmission

1. See: J.M. Martínez, M. González Harbour, and J.J. Gutiérrez. “RT-EP: Real-Time Ethernet Protocol for
Analyzable Distributed Applications on a Minimum Real-Time POSIX Kernel”. Proceedings of the 2nd
International Workshop on Real-Time LANs in the Internet Age, RTLIA 2003, Porto (Portugal), July 2003.
Description of the MAST Model- 10/2/25 - Page 14

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
time, as with the Packet_Driver, but rather a combination of several attributes. See the
RT-EP documentation for a description of the overhead model. The attributes of the RT-
EP Packet Driver are those of a Packet Driver plus the following:

- Number of stations: The number of stations or processors connected with the RTEP
network. This attribute is used to determine the token rotation time and several
overhead values. The default value is the largest integer (Integer’Last).

- Token delay: The configurable delay introduced during the handling of a token to
slow the token transmission time in order to bound the overhead of each of the
processors connected to the RT-EP network. The default value is zero, which
implies maximum overhead and minimum latency.

- Failure Timeout: This is the configurable timeout used to determine that there has
been a packet loss due to a failure in the network. The default value is a large time,
which would imply no error recovery.

- Token transmission retries: Maximum number of retransmissions that we allow for
each packet containing a protocol token. The default value is zero.

- Packet transmission retries: Maximum number of retransmissions that we allow
for each packet with user information. The default value is zero.

- Packet interrupt server: The scheduling server that is executing the interrupt
service routine that handles each incoming packet, independently of whether it is a
packet with information or a protocol token. It may be the scheduler server itself,
or a reference to an external scheduling server.

- Packet ISR operation: The operation executed by the packet interrupt server for
each incoming packet, independently of whether it is a packet with information or
a protocol token.

- Token check operation: The operation executed by the packet server to receive and
check a token packet, or a reference to it.

- Token manage operation: The operation executed by the packet server to send a
token, or a reference to it.

- Packet discard operation: The operation executed by the packet server when a
packet is received that is addressed to another processing node, or a reference to it.

- Token retransmission operation: The operation executed by the packet server when
a lost token is retransmitted, or a reference to it.

- Packet retransmission operation: The operation executed by the packet server
when a packet with information that was lost is retransmitted, or a reference to it.

Driver = (

Type => RTEP_Packet_Driver,

Packet_Server => Scheduling_Server | Identifier,

Packet_Send_Operation => Operation | Identifier,

Packet_Receive_Operation => Operation | Identifier,

Message_Partitioning => Yes | No,

RTA_Overhead_Model => Coupled | Decoupled,

Number_Of_Stations => Integer,

Token_Delay => Time,
Description of the MAST Model- 10/2/25 - Page 15

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Failure_Timeout => Time,

Token_Transmission_Retries => Integer,

Packet_Transmission_Retries => Integer,

Packet_Interrupt_Server => Scheduling_Server | Identifier,

Packet_ISR_Operation => Operation | Identifier,

Token_Check_Operation => Operation | Identifier,

Token_Manage_Operation => Operation | Identifier,

Packet_Discard_Operation => Operation | Identifier,

Token_Retransmission_Operation => Operation | Identifier,

Packet_Retransmission_Operation => Operation | Identifier)

8.4 Schedulers

They represent the operating system objects that implement the appropriate scheduling
strategies to manage the amount of processing capacity that has been assigned to them.

Schedulers can have a hierarchical structure, like the one shown in Figure 5. A Primary
Scheduler operates by offering the whole processing capacity of its associated base processor
to its associated scheduling servers. A Secondary Scheduler is allowed to deliver to its
scheduling servers just the processing capacity that it receives from its associated scheduling
server, scheduled in turn by some other scheduler.

Common attributes:

• Name. A string.

• Policy. It defines the scheduling policy that is implemented by the scheduler to deliver
the underlying processing capacity among the scheduling servers that are associated with
it. It is a mandatory attribute.

There are two classes of schedulers, according to the source of processing capacity:

• Primary Scheduler. It represents the base system scheduler for its associated processing
resource. It has the following additional attribute:

- Host. A reference to the processing resource.

Scheduler (

Type => Primary_Scheduler,

Name => Identifier,

Policy => Scheduling_Policy,

Host => Identifier); --Processing_Resource

• Secondary Scheduler. It represents a scheduler that is able to handle only a certain
fraction of processing capacity, which in turn is served by a particular scheduling server
through another scheduler associated to it. It has the following additional attribute:

- Server. A reference to the scheduling server.

Scheduler (

Type => Secondary_Scheduler,

Name => Identifier,

Policy => Scheduling_Policy,

Server => Identifier); --Scheduling_Server
Description of the MAST Model- 10/2/25 - Page 16

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
8.5 Scheduling policies

A scheduling policy represents the basic strategy that is implemented in a scheduler to deliver
the assigned processing capacity to its associated scheduling servers. Each of these servers has
a Scheduling_Parameters object that describes the parameters used by the scheduler.

Classes of Scheduling Policies:

• Fixed Priority. It represents a fixed-priority policy. It has the following attributes:

- Context Switch Overheads (Worst, Average, Best). Their default values are zero.

- Max Priority and Min Priority. They define the range of priorities that are valid for
normal operations on scheduling servers scheduled with this policy. Special
operations (such as interrupt service routines in processors) may have other
priority ranges. The default values are respectively the maximum and minimum
values of the Any_Priority type.

Scheduling_Policy (

Type => Fixed_Priority,

Figure 5. Hierarchical scheduler structure

Scheduling
Server

Primary
Scheduler

Scheduling
Parameters

Reference

Processing
Resource

Scheduling
Policy

Scheduling
Server

Scheduling
Parameters Scheduling

Server
Scheduling
Parameters Scheduling

Server
Scheduling
Parameters

Secondary
Scheduler

Scheduling
Policy

Scheduling
Server

Scheduling
Parameters Scheduling

Server
Scheduling
Parameters Scheduling

Server
Scheduling
Parameters
Description of the MAST Model- 10/2/25 - Page 17

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Worst_Context_Switch => Normalized_Execution_Time,

Avg_Context_Switch => Normalized_Execution_Time,

Best_Context_Switch => Normalized_Execution_Time,

Max_Priority => Priority,

Min_Priority => Priority);

• EDF. It represents an Earliest Deadline First policy. It has the following attributes:

- Context Switch Overheads (Worst, Average, Best). Their default values are zero.

Scheduling_Policy (

Type => EDF,

Worst_Context_Switch => Normalized_Execution_Time,

Avg_Context_Switch => Normalized_Execution_Time,

Best_Context_Switch => Normalized_Execution_Time);

• Fixed Priority Packet Based. It represents a fixed priority policy used in a packet
oriented communication network. Network packets are assumed to be non preemptible.
It has the following attributes:

- Packet Overhead (Worst, Average, Best). This is the overhead associated with
sending each packet, because of the protocol messages or headers that need to be
sent before or after each packet. There are two ways of specifying the overheads,
one using transmission time, and another one using a bit count (which is then
translated to time using the throughput attribute of the network associated to the
scheduler that uses this policy). The default values for these attributes are zero.

- Max Priority and Min Priority. They define the range of priorities valid for
messages to be sent using this policy. The default values are respectively the
maximum and minimum values of the Any_Priority type.

Scheduling_Policy (

Type => FP_Packet_Based,

Packet_Worst_Overhead => Normalized_Execution_Time,

Packet_Avg_Overhead => Normalized_Execution_Time,

Packet_Best_Overhead => Normalized_Execution_Time,

Packet_Overhead_Max_Size => Bit_Count,

Packet_Overhead_Avg_Size => Bit_Count,

Packet_Overhead_Min_Size => Bit_Count,

Max_Priority => Priority,

Min_Priority => Priority);

8.6 Scheduling parameters

These parameters are attached to a scheduling server and are used by its scheduler to make its
scheduling decisions when the server is competing with other servers. Some scheduling
policies allow several compatible scheduling behaviours to coexist in the system. For example,
the fixed priority scheduling policy allows both preemptive and non preemptive activities.
These different scheduling behaviours are determined by the scheduling parameters type and
are also called the per-server policy parameters.

There are several classes of scheduling parameters. There are some restrictions on the
compatibility between scheduling parameters and the scheduling policy of the associated
Description of the MAST Model- 10/2/25 - Page 18

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
scheduler. The scheduling parameters described in Section 8.6.1 are only applicable to
schedulers with the fixed priority policy. Those described in Section 8.6.2 are only applicable
to schedulers with the EDF policy.

8.6.1 Fixed priority scheduling parameters

All the fixed priority scheduling parameters have the following set of common attributes:

• Priority. A natural number that represents the scheduling priority. It must be within the
valid ranges for the associated scheduler. Its default value is the minimum value of the
Any_Priority type.

• Preassigned. If this parameter is set to the value “No”, the priority may be assigned by
one of the priority assignment tools. Otherwise, the priority is fixed and cannot be
changed by those tools. Its default value is “No” if no priority field appears, and “Yes” if
a priority field appears in the MAST description.

The classes defined are:

• Non Preemptible Fixed Priority Policy. Activities scheduled with these parameters are
non preemptible. No additional attributes.

Sched_Parameters = (

Type => Non_Preemptible_FP_Policy,

The_Priority => Priority,

Preassigned => Yes | No)

• Fixed Priority Policy. Represents a regular preemptive fixed priority parameters object.
No additional attributes.

Sched_Parameters = (

Type => Fixed_Priority_Policy,

The_Priority => Priority,

Preassigned => Yes | No)

• Interrupt Fixed Priority Policy. Represents an interrupt service routine. No additional
attributes. The “Preassigned” field cannot be set to “No”, because interrupt priorities are
always preassigned.

Sched_Parameters = (

Type => Interrupt_FP_Policy,

The_Priority => Interrupt_Priority,

Preassigned => Yes)

• Polling Policy. Represents the scheduling mechanism by which there is a periodic task
that polls for the arrival of its input event. Thus, execution of the event may be delayed
until the next period. Its additional attributes are:

- Polling Period. Period of the polling task. Its default value is zero.

- Polling Overhead (Worst, Average, Best). Overhead of the polling task. Their
default values are zero.

Sched_Parameters = (
Description of the MAST Model- 10/2/25 - Page 19

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Type => Polling_Policy,

The_Priority => Priority,

Preassigned => Yes | No,

Polling_Period => Time,

Polling_Worst_Overhead => Normalized_Execution_Time,

Polling_Avg_Overhead => Normalized_Execution_Time,

Polling_Best_Overhead => Normalized_Execution_Time)

• Sporadic Server Policy. Represents a task scheduled under the sporadic server
scheduling algorithm. Its additional attributes are:

- Background Priority. Represents the priority at which the task executes when there
is no available execution capacity. Its default value is the minimum value of the
Priority type.

- Initial Capacity. Its the initial value of the execution capacity. Its default value is
zero.

- Replenishment Period. It is the period after which a portion of consumed execution
capacity is replenished. Its default value is zero.

- Max Pending replenishments. It is the maximum number of simultaneously
pending replenishment operations. Its default value is one.

Sched_Parameters = (

Type => Sporadic_Server_Policy,

Normal_Priority => Priority,

Preassigned => Yes | No,

Background_Priority => Priority,

Initial_Capacity => Time,

Replenishment_Period => Time,

Max_Pending_Replenishments => Positive)

Part of the fixed priority scheduling parameters may also be overridden for a particular
operation, by including an overridden scheduling parameters object in its definition.

Overridden_Sched_Parameters = (

Type => Overridden_Fixed_Priority,

The_Priority => Any_Priority)

Overridden_Sched_Parameters = (

Type => Overridden_Permanent_FP,

The_Priority => Any_Priority)

8.6.2 EDF Scheduling Parameters

All the EDF scheduling parameters have the following set of common attributes:

• Deadline. Relative deadline of the associated scheduling server. Its default value is a
Large Time.
Description of the MAST Model- 10/2/25 - Page 20

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Preassigned. If this parameter is set to the value “No”, the deadline may be assigned by
one of the deadline assignment tools. Otherwise, it is fixed and cannot be changed by
those tools. Its default value is “No” if no deadline field appears in the MAST
description, and “Yes” if any of them is present.

There is only one class of EDF scheduling parameters defined at the moment:

• Earliest Deadline First Policy. Represents a task scheduled according to the “earliest
deadline first” policy. It has no additional attributes.

Sched_Parameters = (

Type => EDF_Policy,

Deadline => Time,

Preassigned => Yes | No)

8.7 Synchronization Parameters

These parameters are attached to a scheduling server to specify the parameters used by that
server when performing a mutually exclusive access to shared resources.

The synchronization parameters should be specified whenever the scheduling policy is such
that the given Scheduling Parameters do not have enough information for the synchronization
protocols used. For example, no synchronization parameters are needed for the priority
inheritance or immediate priority ceiling protocols, because the only information they require
from the server is its priority.

The only class defined for the synchronization parameters is named Stack Resource Protocol
Parameters because it is associated with that synchronization protocol. Its attributes are:

• Preemption Level. A natural number that represents the level of preemptability of the
scheduling server in relation to the shared resource. It must be within the valid ranges for
the implementation. Its default value is the minimum value of the Preemption_Level
type.

• Preassigned. If this parameter is set to the value “No”, the value of the preemption level
may be assigned by any of the specific design tools. Otherwise, it is fixed and cannot be
changed by those tools. Its default value is “No” if no preemption level field appears in
the MAST description, and “Yes” if it is present.

Synch_Parameters = (

Type => SRP_Parameters,

Preemption_Level => Preemption_Level,

Preassigned => Yes | No)

8.8 Scheduling Servers

They represent schedulable entities in a processing resource. There is only one class defined,

named Regular1. Its attributes are:

1. For backwards compatibility with MAST 1.2 and previous versions, there is a different way to describe the
scheduling server using the Fixed_Priority type.
Description of the MAST Model- 10/2/25 - Page 21

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Name

• Scheduling Parameters. Object with the parameters that are needed by the scheduler to
apply the corresponding scheduling policy.

• Synchronization Parameters. Object with the parameters that are needed by the
scheduler to apply the corresponding synchronization protocol in the mutually exclusive
access to shared resources. It should be present whenever the synchronization protocols
used by the server need more information than the one available in the scheduling
parameters.

• Scheduler. Reference to the scheduler that serves it.

Scheduling_Server (

Type => Regular,

Name => Identifier,

Server_Sched_Parameters => Sched_Parameters,

Synchronization_Parameters => Synch_Parameters,

Scheduler => Identifier);

8.9 Shared Resources

They represent resources that are shared among different threads or tasks, and that must be
used in a mutually exclusive way. Only protocols that avoid unbounded priority inversion are
allowed. There are three classes, depending on the protocol:

• Immediate Ceiling Resource. Uses the immediate priority ceiling resource protocol. This
is equivalent to Ada’s Priority Ceiling, or the POSIX priority protect protocol. Its
attributes are:

- Name.

- Ceiling. Priority ceiling used for the resource. May be computed automatically by
the tool, upon request. Its default value is the maximum value of the Any_Priority
type.

- Preassigned. If this parameter is set to the value “No”, the priority ceiling may be
assigned by the “Calculate Ceilings” tool. Otherwise, the priority ceiling is fixed
and cannot be changed by those tools. Its default value is “No” if no ceiling field
appears, and “Yes” if a ceiling field appears.

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Identifier,

Ceiling => Any_Priority,

Preassigned => Yes | No);

• Priority Inheritance Resource. Uses the basic priority inheritance protocol. Its attributes
are:

- Name.

Shared_Resource (

Type => Priority_Inheritance_Resource,

Name => Identifier);
Description of the MAST Model- 10/2/25 - Page 22

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Stack Based Resource. Uses the Stack Resource Protocol (SRP). This is similar to the
immediate ceiling protocol but works for non-priority-based policies. Its attributes are:

- Name.

- Preemption Level. Level of preemptability used for the resource. May be computed
automatically by the MAST tools, upon request. Its default value is the maximum
value of the Preemption_Level type.

- Preassigned. If this parameter is set to the value “No”, the preemption level may be
assigned by a tool. Otherwise, the priority ceiling is fixed and cannot be changed
by any tool. Its default value is “No” if no preemption level field appears in the
MAST description, and “Yes” if a preemption level field appears.

Shared_Resource (

Type => SRP_Resource,

Name => Identifier,

Preemption_Level => Preemption_Level,

Preassigned => Yes | No);

8.10 Operations

They represent a piece of code, or a message. They all have the following common attributes:

• Overridden Scheduling Parameters. Represents a priority level above the normal priority
level that at which the operation would execute:

- For a regular overridden priority (Overridden_Fixed_Priority), the change of
priority is in effect only until the operation is completed.

- For a permanent overridden priority (Overridden_Permanent_FP), the change of
priority is in effect until another permanent overridden priority, or until the end of
the segment of activities, i.e., a set of consecutive activities (consecutive in the
transaction graph) executed by the same scheduling server.

The following classes of operations are defined:

• Simple. Represents a simple piece of code or message. Additional attributes are:

- Execution Time (Worst, Average and Best). In normalized units. For messages, this
represents the transmission time. The default values are very large time values for
the worst and average, and zero for the best execution time.

- Shared resources to lock. List of references to the shared resources that must be
locked before executing the operation.

- Shared resources to unlock. List of references to the shared resources that must be
unlocked after executing the operation.

- Shared resources list.

Operation (

Type => Simple,

Name => Identifier,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Worst_Case_Execution_Time => Normalized_Execution_Time,
Description of the MAST Model- 10/2/25 - Page 23

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Avg_Case_Execution_Time => Normalized_Execution_Time,

Best_Case_Execution_Time => Normalized_Execution_Time,

Shared_Resources_To_Lock => (

Identifier,

Identifier,

...),

Shared_Resources_To_Unlock => (

Identifier,

Identifier,

...));

Operation (

Type => Simple,

Name => Identifier,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Worst_Case_Execution_Time => Normalized_Execution_Time,

Avg_Case_Execution_Time => Normalized_Execution_Time,

Best_Case_Execution_Time => Normalized_Execution_Time,

Shared_Resources_List => (

Identifier,

Identifier,

...));

• Composite. Represents an operation composed of an ordered sequence of other
operations, simple or composite. The execution time attribute of this class cannot be set,
because it is the sum of the execution times of the comprised operations. Its additional
attributes are:

- Operation List: List of references to other operations

Operation (

Type => Composite,

Name => Identifier,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Composite_Operation_List => (

Identifier,

Identifier,

...));

• Enclosing. Represents an operation that contains an ordered sequence of operations as
part of its execution. The execution time is not the sum of execution times of the
comprised operations, because other pieces of code may be executed in addition. The
enclosed operations, and their ordering in the list, need to be considered for the purpose
of calculating the blocking times associated with their shared resource usage. Its
additional attributes are:

- Execution Time (Worst, Average and Best). In normalized units. For messages, this
represents the transmission time. The default values are very large time values for
the worst and average, and zero for the best execution time.

- Operation List: List of references to other operations

Operation (
Description of the MAST Model- 10/2/25 - Page 24

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Type => Enclosing,

Name => Identifier,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Worst_Case_Execution_Time => Normalized_Execution_Time,

Avg_Case_Execution_Time => Normalized_Execution_Time,

Best_Case_Execution_Time => Normalized_Execution_Time,

Composite_Operation_List => (

Identifier,

Identifier,

...));

• Message_Transmission. Represents a message to be transmitted through a network. Its
additional attributes are:

- Message Size (Worst, Average and Best). In Bit_Count units. The transmission
time is obtained by dividing the size by the Throughput and by the Speed_Factor
of the corresponding Network. The default values are very large Bit_Count values
for the worst and average, and zero for the best message size.

Operation (

Type => Message_Transmission,

Name => Identifier,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Max_Message_Size => Bit_Count,

Avg_Message_Size => Bit_Count,

Min_Message_Size => Bit_Count);

8.11 Events

Events may be internal or external, and represent channels of event streams, through which
individual event instances may be generated. An event instance activates an instance of an
activity, or influences the behaviour of the event handler to which it is directed.

• Internal events. They are generated by an event handler. Their attributes are:

- Name.

- Timing Requirements. Reference to the timing requirements imposed on the
generation of the event. See the description of timing requirements below

Internal_Event = (

Type => Regular,

Event => Identifier)

Timing_Requirements => Timing_Requirement)

For the external events, the following classes are defined:

• Periodic. Represents a stream of events that are generated periodically. They have the
following attributes:

- Name.

- Period. Event period. Its default value is zero.
Description of the MAST Model- 10/2/25 - Page 25

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
- Max Jitter. The event jitter is an amount of time that may be added to the activation
time of each event instance, and is bounded by the maximum jitter attribute. It
influences the schedulability of the system. Its default value is zero.

- Phase. It is the instant of the first activation, if it had no jitter. After that time, the
following events are periodic (possibly with jitter). Its default value is zero.

External_Event = (

Type => Periodic,

Name => Identifier,

Period => Time,

Max_Jitter => Maximum jitter of Periodic event,

Phase => Absolute_Time);

• Singular. Represents an event that is generated only once. It has the following attributes:

- Name.

- Phase. It is the instant of the first activation. Its default value is zero.

External_Event = (

Type => Singular,

Name => Identifier,

Phase => Absolute_Time);

• Sporadic. Represents a stream of aperiodic events that have a minimum interarrival time.
They have the following attributes:

- Name.

- Min Interarrival. Minimum time between the generation of two events. Its default
value is zero.

- Average Interarrival. Average interarrival time. Its default value is zero.

- Distribution. It represents the distribution function of the aperiodic events. It can
be Uniform (default value) or Poisson.

External_Event = (

Type => Sporadic,

Name => Identifier,

Avg_Interarrival => Time,

Distribution => Uniform|Poisson,

Min_Interarrival => Time);

• Unbounded. Represents a stream of aperiodic events for which it is not possible to
establish an upper bound on the number of events that may arrive in a given interval.
They have the following attributes:

- Name.

- Average Interarrival. Average interarrival time. Its default value is zero.

- Distribution. It represents the distribution function of the aperiodic events. It can
be Uniform (default value) or Poisson.

External_Event = (
Description of the MAST Model- 10/2/25 - Page 26

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Type => Unbounded,

Name => Identifier,

Avg_Interarrival => Time,

Distribution => Uniform|Poisson);

• Bursty. Represents a stream of aperiodic events that have an upper bound on the number
of events that may arrive in a given interval. Within this interval, events may arrive with
an arbitrarily low distance among them (perhaps as a burst of events). They have the
following attributes:

- Name.

- Bound_Interval. Interval for which the amount of event arrivals is bounded. Its
default value is zero.

- Max_Arrivals. Maximum number of events that may arrive in the Bound_Interval.
Its default value is one.

- Average Interarrival. Average interarrival time. Its default value is zero.

- Distribution. It represents the distribution function of the aperiodic events. It can
be Uniform (default value) or Poisson.

External_Event = (

Type => Bursty,

Name => Identifier,

Avg_Interarrival => Time,

Distribution => Uniform|Poisson,

Bound_Interval => Time,

Max_Arrivals => Positive);

8.12 Timing Requirements

They represent requirements imposed on the instant of generation of the associated internal
event. There are different kinds of requirements:

• Deadlines. They represent a maximum time value allowed for the generation of the
associated event. They are expressed as a relative time interval that is counted in two
different ways:

- Local Deadlines: they appear only associated with the output event of an activity;
the deadline is relative to the arrival of the event that activated that activity.

- Global deadlines: the deadline is relative to the arrival of a Referenced Event, that
is an attribute of the deadline.

In addition, deadlines may be hard or soft:

- Hard Deadlines: they must be met in all cases, including the worst case

- Soft Deadlines: they must be met on average.

This gives way to four kinds of deadlines:

- Hard Global Deadline. Attributes are the value of the Deadline (default=0), and a
reference to the Referenced Event.
Description of the MAST Model- 10/2/25 - Page 27

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
- Soft Global Deadline. Attributes are the value of the Deadline (default=0), and a
reference to the Referenced Event.

- Hard Local Deadline. The only attribute is the value of the Deadline (default=0).

- Soft Local Deadline. The only attribute is the value of the Deadline (default=0).

Timing_Requirement = (

Type => Hard_Global_Deadline,

Deadline => Time,

Referenced_Event => Identifier)

Timing_Requirement = (

Type => Hard_Local_Deadline,

Deadline => Time)

Timing_Requirement = (

Type => Soft_Global_Deadline,

Deadline => Time,

Referenced_Event => Identifier)

Timing_Requirement = (

Type => Soft_Local_Deadline,

Deadline => Time)

• Max Output Jitter Requirement: Represents a requirement for limiting the jitter with
which a periodic internal event is generated. Output jitter is calculated as the difference
between the worst-case response time and the best-case response time for the associated
event, relative to a Referenced Event that is an attribute of this requirement.
Consequently, the attributes are:

- Max Output Jitter. Time value (default=0).

- Referenced Event. Reference to an event.

Timing_Requirement = (

Type => Max_Output_Jitter_Req,

Max_Output_Jitter => Time,

Referenced_Event => Identifier)

• Max Miss Ratio: Represents a kind of soft deadline in which the deadline cannot be
missed more often than a specified ratio. Its attributes are

- Deadline. Time Value (default=0).

- Ratio. Percentage representing the maximum ratio of missed deadlines
(default=5%).

There are two kinds of Max Miss Ratio requirements: global or local:

- Local Max Miss Ratio. The deadline is relative to the activation of the activity to
which the timing requirement is attached. It has no additional attributes.

- Global Max Miss Ratio. The deadline is relative to a Referenced Event, which is an
additional attribute of this class.
Description of the MAST Model- 10/2/25 - Page 28

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Timing_Requirement = (

Type => Global_Max_Miss_Ratio,

Deadline => Time,

Ratio => Percentage,

Referenced_Event => Identifier)

Timing_Requirement = (

Type => Local_Max_Miss_Ratio,

Deadline => Time,

Ratio => Percentage)

• Composite: An event may have several timing requirements imposed at the same time,
which are expressed via a composite timing requirement. It is just a list of simple timing
requirements.

Timing_Requirement = (

Type => Composite,

Requirements_List => (

Timing_Requirement 1,

Timing_Requirement 2,

...))

8.13 Event Handlers

Event handlers represent actions that are activated by the arrival of one or more events, and
that in turn generate one or more events at their output. There are two fundamental classes of
event handlers. The Activities represent the execution of an operation by a scheduling server, in
a processing resource, and with some given scheduling parameters. The other operations are
just a mechanism for handling events, with no runtime effects. Any overhead associated with
their implementation is charged to the associated activities. Figure 6 shows the different
classes of events.

• Activity. It represents an instance of an operation, to be executed by a scheduling server.
Its attributes are:

- Input event. Reference to the event

Activity / Rate Divisor / Delay / Offset

Concentrator

... +

Barrier

...

Delivery / Query Server

...+

.

Multicast

....

Figure 6. Classes of Event Handlers
Description of the MAST Model- 10/2/25 - Page 29

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
- Output event. Reference to the event

- Activity Operation. Reference to the operation

- Activity server. Reference to the scheduling server (which in turn contains
references to the scheduling parameters and the processing resource).

Event_Handler = (

Type => Activity,

Input_Event => Identifier,

Output_Event => Identifier,

Activity_Operation => Identifier,

Activity_Server => Identifier)

• System Timed Activity. It represents an activity that is activated by the system timer, and
thus is subject to the overheads associated with it. It only makes sense to have a System
Timed Activity that is activated from an external event, or an event generated by the
Delay or Offset event handlers (see below). It has the same attributes as the regular
activity.

Event_Handler = (

Type => System_Timed_Activity,

Input_Event => Identifier,

Output_Event => Identifier,

Activity_Operation => Identifier,

Activity_Server => Identifier)

• Concentrator. It is an event handler that generates its output event when any one of its
input events arrives. Its attributes are:

- Input events. References to the input events

- Output event. Reference to the output event

Event_Handler = (

Type => Concentrator,

Output_Event => Identifier,

Input_Events_List => (

Identifier,

Identifier,

...))

• Barrier. It is an event handler that generates its output event when all of its input events
have arrived. For worst-case analysis to be possible it is necessary that all the input
events are periodic with the same periods. This usually represents no problem if the
concentrator is used to perform a “join” operation after a “fork” operation carried out
with the Multicast event handler (see below). Its attributes are:

- Input events. References to the input events

- Output event. Reference to the output event

Event_Handler = (

Type => Barrier,

Output_Event => Identifier,
Description of the MAST Model- 10/2/25 - Page 30

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Input_Events_List => (

Identifier,

Identifier,

...))

• Delivery Server. It is an event handler that generates one event in only one of its outputs
each time an input event arrives. The output path is chosen at the time of the event
generation. Its attributes are:

- Input event. Reference to the input event

- Output events. References to the output events

- Delivery Policy. Is the policy used to determine the output path. It may be Scan
(the output path is chosen in a cyclic fashion) or Random (default value).

Event_Handler = (

Type => Delivery_Server,

Delivery_Policy => Scan|Random,

Input_Event => Identifier,

Output_Events_List => (

Identifier,

Identifier,

...))

• Query Server. It is an event handler that generates one event in only one of its outputs
each time an input event arrives. The output path is chosen at the time of the event
consumption by one of the activities connected to an output event. Its attributes are:

- Input event. Reference to the input event

- Output events. References to the output events

- Request Policy. Is the policy used to determine the output path when there are
several pending requests from the connected activities. It may be Scan (the output
path is chosen in a cyclic fashion), Priority (the highest priority activity wins),
FIFO or LIFO. The default value is Scan.

Event_Handler = (

Type => Query_Server,

Request_Policy => Priority|FIFO|LIFO|Scan,

Input_Event => Identifier,

Output_Events_List => (

Identifier,

Identifier,

...))

• Multicast. It is an event handler that generates one event in every one of its outputs each
time an input event arrives. Its attributes are:

- Input event. Reference to the input event

- Output events. References to the output events

Event_Handler = (

Type => Multicast,
Description of the MAST Model- 10/2/25 - Page 31

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Input_Event => Identifier,

Output_Events_List => (

Identifier,

Identifier,

...))

• Rate Divisor. It is an event handler that generates one output event when a number of
input events equal to the Rate Factor have arrived. Its attributes are:

- Input event. Reference to the input event

- Output event. Reference to the output event

- Rate Factor. Number of events that must arrive to generate an output event. Its
default value is one.

Event_Handler = (

Type => Rate_Divisor,

Input_Event => Identifier,

Output_Event => Identifier,

Rate_Factor => Positive)

• Delay. It is an event handler that generates its output event after a time interval has
elapsed from the arrival of the input event. Its attributes are:

- Input event. Reference to the input event

- Output event. Reference to the output event

- Delay Max Interval. Longest time interval used to generate the output event. Its
default value is zero.

- Delay Min Interval. Shortest time interval used to generate the output event. Its
default value is zero.

Event_Handler = (

Type => Delay,

Input_Event => Identifier,

Output_Event => Identifier,

Delay_Max_Interval => Time,

Delay_Min_Interval => Time)

• Offset. It is similar to the Delay event handler, except that the time interval is counted
relative to the arrival of some (previous) event. If the time interval has already passed
when the input event arrives, the output event is generated immediately. Its attributes are
the same as for the Delay event handler, plus the following:

- Referenced Event: Reference to the appropriate event.

Event_Handler = (

Type => Offset,

Input_Event => Identifier,

Output_Event => Identifier,

Delay_Max_Interval => Time,

Delay_Min_Interval => Time,

Referenced_Event => Identifier)
Description of the MAST Model- 10/2/25 - Page 32

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
8.14 Transactions

The transaction is a graph of event handlers and events, that represents activities executed in
the system which are interrelated. A transaction is defined with three different components that
have already been described:

• A list of external events

• A list of internal events, with their timing requirements if any

• A list of Event handlers

In addition, each transaction has a Name attribute. There is only one class of transaction
defined, called a Regular transaction.

Transaction (

Type => Regular,

Name => Identifier,

External_Events => (

External_Event 1,

External_Event 2,

...),

Internal_Events => (

Internal_Event 1,

Internal_Event 2,

...),

Event_Handlers => (

Event_Handler 1,

Event_Handler 2,

...));

8.15 Overall Model

A Real-Time situation represents the overall MAST model of a real-time situation that a
particular system may have, and that needs to be analysed. Global information about the real-
time situation and the underlying implementation is described in the Model object, which
contains the following attributes:

• Model name: a string

• Model date: the date in which the real-time situation model was created.

• System PiP Behaviour: the behaviour of the underlying implementation in regard to the
priority inheritance protocol. It can be STRICT, when the implementation strictly
follows the original priority inheritance protocol, or POSIX, which allows a more
relaxed implementation that can lead to longer blocking times. The default value is
STRICT.

Model (

Model_Name => Identifier,

Model_Date => YYYY-MM-DDThh:mm:ss,

System_PiP_Behaviour1 => STRICT | POSIX);
Description of the MAST Model- 10/2/25 - Page 33

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
9. Templates for the MAST File

In the text special-purpose format, the structure of a Mast model file is the following:

-- Real-Time System Model

-- File format

-- This line is just an example of a comment

Model(

Model_Name => Identifier,

Model_Date => YYYY-MM-DDThh:mm:ss);

-- Resources

Processing_Resource (

Type => Fixed_Priority_Processor,

Name => Name of the processing resource,

Max_Priority => Task Priority,

Min_Priority => Task Priority,

Max_Interrupt_Priority => Interrupt Priority,

Min_Interrupt_Priority => Interrupt Priority,

Worst_Context_Switch => WCS Time for Processors,

Avg_Context_Switch => ACS Time for Processors,

Best_Context_Switch => BCS Time for Processors,

Worst_ISR_Switch => WISR Time for Processors,

Avg_ISR_Switch => AISR Time for Processors,

Best_ISR_Switch => BISR Time for Processors,

System_Timer => System_Timer,

Speed_Factor => Float);

 -- real execution times = normalized execution times/Speed_Factor;

 -- Ticker Overhead is real execution time

Processing_Resource (

Type => Fixed_Priority_Network,

Name => Name of the processing resource,

Max_Priority => Message Priority,

Min_Priority => Message Priority,

Packet_Worst_Overhead => PWO for Networks,

Packet_Avg_Overhead => PAO for Networks,

Packet_Best_Overhead => PBO for Networks,

Transmission => Simplex | Half_Duplex | Full_Duplex,

Max_Packet_Transmission_Time => Max Packet transmission time,

Min_Packet_Transmission_Time => Min Packet transmission time,

Speed_Factor => Float,

List_of_Drivers => (

Driver 1,

Driver 2,

...));

1. The alternative spelling System_PiP_Behavior is also supported
Description of the MAST Model- 10/2/25 - Page 34

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 -- Overheads are normalized execution times.

 -- Real execution times = normalized_execution_time/processor speed

 -- Packet_Transmission_Time is the real transmission time

-- System Timers

System_Timer = (

Type => Ticker

Worst_Overhead => Worst Overhead of ticker,

Avg_Overhead => Avg Overhead of ticker,

Best_Overhead => Best Overhead of ticker,

Period => Period of ticker for Processors)

System_Timer = (

Type => Alarm Clock

Worst_Overhead => Worst Overhead of timer,

Avg_Overhead => Avg Overhead of timer,

Best_Overhead => Best Overhead of timer,

-- Drivers

Driver = (

Type => Packet_Driver,

Packet_Server => Scheduling_Server,

Packet_Send_Operation => Simple Operation,

Packet_Receive_Operation => Simple Operation)

-- The scheduling server and the operations are embedded in the

-- description, with all their attributes, but without the keywords

-- "Scheduling_Server" or "Operation"

Driver = (

Type => Character_Packet_Driver,

Packet_Server => Scheduling_Server,

Packet_Send_Operation => Simple Operation,

Packet_Receive_Operation => Simple Operation,

Character_Server => Scheduling_Server,

Character_Send_Operation => Simple Operation,

Character_Receive_Operation => Simple Operation,

Character_Transmission_Time => Transmission Time)

-- The scheduling server and the operations are embedded in the

-- description, with all their attributes, but without the keywords

-- "Scheduling_Server" or "Operation"

-- Shared Resources

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Name of the data resource,

Ceiling => Ceiling of resource, any priority,

Preassigned => No);

Shared_Resource (
Description of the MAST Model- 10/2/25 - Page 35

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Type => Priority_Inheritance_Resource,

Name => Name of the data resource);

-- Operations

Operation (

Type => Simple,

Name => Name of the operation,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Worst_Case_Execution_Time => WCET,

Avg_Case_Execution_Time => ACET,

Best_Case_Execution_Time => BCET,

Shared_Resources_To_Lock => (

Shared Resource Name 1,

Shared Resource Name 2,

...),

Shared_Resources_To_Unlock => (

Shared Resource Name 1,

Shared Resource Name 2,

...));

 -- The resources specified under Shared_Resources_To_Lock are locked

 -- before the operation starts, in the order defined.

 -- The resources specified under Shared_Resources_To_Unlock are unlocked

 -- after the operation completes, in the order defined.

 -- WCET, ACET and BCET are normalized execution times.

 -- Real execution times = normalized_execution_time/speed factor

Operation (

Type => Simple,

Name => Name of the operation,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Worst_Case_Execution_Time => WCET,

Avg_Case_Execution_Time => ACET,

Best_Case_Execution_Time => BCET,

Shared_Resources_List => (

Shared Resource Name 1,

Shared Resource Name 2,

...));

 -- This is an alternative way to declare a simple object. The resources

 -- specified under Shared_Resources_List are locked before the operation

 -- starts, in the order defined, and are unlocked when the operation

 -- finishes, in the reverse order.

 -- WCET, ACET and BCET are normalized execution times.

 -- Real execution times = normalized_execution_time/speed factor

Operation (

Type => Composite,

Name => Name of the operation,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Composite_Operation_List => (

Operation Name 1,
Description of the MAST Model- 10/2/25 - Page 36

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Operation Name 2,

...));

Operation (

Type => Enclosing,

Name => Name of the operation,

Overridden_Sched_Parameters => Overridden_Sched_Parameters,

Worst_Case_Execution_Time => WCET,

Avg_Case_Execution_Time => ACET,

Best_Case_Execution_Time => BCET,

Composite_Operation_List => (

Operation Name 1,

Operation Name 2,

...));

 -- WCET, ACET and BCET are normalized execution times.

 -- Real execution times = normalized_execution_time/speed factor

-- Scheduling Servers

Scheduling_Server (

Type => Fixed_Priority,

Name => Name of the server,

Server_Sched_Parameters => Fixed_Priority_Sched_Parameters,

Server_Processing_Resource => Name of the Processing Resource);

-- Transactions

Transaction (

Type => Regular,

Name => Name of the transaction,

External_Events => (

External_Event 1,

External_Event 2,

...),

Internal_Events => (

Internal_Event 1,

Internal_Event 2,

...),

Event_Handlers => (

Event_Handler 1,

Event_Handler 2,

...));

-- External Events

External_Event = (

Type => Periodic,

Name => Name of the event,

Period => Period of the Periodic event,

Max_Jitter => Maximum jitter of Periodic event,

Phase => Phase of Periodic event);

 -- The Phase represents the absolute start time of the first period,
Description of the MAST Model- 10/2/25 - Page 37

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 -- i.e., the first event generation time if Max_Jitter=0

External_Event = (

Type => Singular,

Name => Name of the event,

Phase => Phase of Periodic event);

 -- The Phase represents the absolute time at which the event

 -- is generated

External_Event = (

Type => Sporadic,

Name => Name of the event,

Avg_Interarrival => Average interarrival time,

Distribution => Uniform|Poisson,

Min_Interarrival => Minimum interarrival time);

External_Event = (

Type => Unbounded,

Name => Name of the event,

Avg_Interarrival => Average interarrival time,

Distribution => Uniform|Poisson);

External_Event = (

Type => Bursty,

Name => Name of the event,

Avg_Interarrival => Average interarrival time,

Distribution => Uniform|Poisson,

Bound_Interval => Interval of Bursty events,

Max_Arrivals => Maximum number of arrivals);

-- Timing requirements

Timing_Requirement = (

Type => Hard_Global_Deadline,

Deadline => Deadline,

Referenced_Event => Name of Event)

Timing_Requirement = (

Type => Hard_Local_Deadline,

Deadline => Deadline)

Timing_Requirement = (

Type => Soft_Global_Deadline,

Deadline => Deadline,

Referenced_Event => Name of Event)

Timing_Requirement = (

Type => Soft_Local_Deadline,

Deadline => Deadline)

Timing_Requirement = (
Description of the MAST Model- 10/2/25 - Page 38

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Type => Global_Max_Miss_Ratio,

Deadline => Deadline,

Ratio => Percentage,

Referenced_Event => Name of Event)

Timing_Requirement = (

Type => Local_Max_Miss_Ratio,

Deadline => Deadline,

Ratio => Percentage)

Timing_Requirement = (

Type => Max_Output_Jitter_Req,

Max_Output_Jitter => Maximum output jitter,

Referenced_Event => Name of Event)

Timing_Requirement = (

Type => Composite,

Requirements_List => (

Timing_Requirement 1,

Timing_Requirement 2,

...))

-- Scheduling Parameters

Fixed_Priority_Sched_Parameters = (

Type => Non_Preemtible_FP_Policy,

The_Priority => Priority,

Preassigned => Yes | No)

Fixed_Priority_Sched_Parameters = (

Type => Fixed_Priority_Policy,

The_Priority => Priority,

Preassigned => Yes | No)

Fixed_Priority_Sched_Parameters = (

Type => Interrupt_FP_Policy,

The_Priority => Interrupt Priority,

Preassigned => Yes)

Fixed_Priority_Sched_Parameters = (

Type => Polling_Policy,

The_Priority => Priority,

Preassigned => Yes | No,

Polling_Period => Period of polling

Polling_Worst_Overhead => Worst overhead of polling

Polling_Avg_Overhead => Average overhead of polling

Polling_Best_Overhead => Best overhead of polling)

 -- Polling overheads are relative execution times

Fixed_Priority_Sched_Parameters = (

Type => Sporadic_Server_Policy,
Description of the MAST Model- 10/2/25 - Page 39

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Normal_Priority => Priority,

Preassigned => Yes | No,

Background_Priority => Background priority,

Initial_Capacity => Initial Capacity,

Replenishment_Period => Replenishment period,

Max_Pending_Replenishments => Maximum of pending replenishment)

Overridden_Sched_Parameters = (

Type => Overridden_Fixed_Priority,

The_Priority => Priority)

Overridden_Sched_Parameters = (

Type => Overridden_Permanent_FP,

The_Priority => Priority)

-- Internal Events

Internal_Event = (

Type => Regular,

Event => Name of the event)

Timing_Requirements => Timing_Requirement)

 -- Note: Events can be internal or external. External events are declared

 -- as described before.

 -- Internal events are declared as part of the transaction.

 -- Each event can only be referenced by one event handler as an input

 -- event, and by one event handler as an output event

-- Event Handlers

Event_Handler = (

Type => Activity,

Input_Event => Name of the Event,

Output_Event => Name of the Event,

Activity_Operation => Name of the operation,

Activity_Server => Name of the scheduling server)

Event_Handler = (

Type => System_Timed_Activity,

Input_Event => Name of the Event,

Output_Event => Name of the Event,

Activity_Operation => Name of the operation,

Activity_Server => Name of the scheduling server)

Event_Handler = (

Type => Concentrator,

Output_Event => Name of the Event,

Input_Events_List => (

Name of the Event 1,

Name of the Event 2,

...))
Description of the MAST Model- 10/2/25 - Page 40

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Event_Handler = (

Type => Barrier,

Output_Event => Name of the Event,

Input_Events_List => (

Name of the Event 1,

Name of the Event 2,

...))

Event_Handler = (

Type => Delivery_Server,

Delivery_Policy => Scan|Random,

Input_Event => Name of the Event,

Output_Events_List => (

Name of the Event 1,

Name of the Event 2,

...))

Event_Handler = (

Type => Query_Server,

Request_Policy => Priority|FIFO|LIFO|Scan,

Input_Event => Name of the Event,

Output_Events_List => (

Name of the Event 1,

Name of the Event 2,

...))

Event_Handler = (

Type => Multicast,

Input_Event => Name of the Event,

Output_Events_List => (

Name of the Event 1,

Name of the Event 2,

...))

Event_Handler = (

Type => Rate_Divisor,

Input_Event => Name of the Event,

Output_Event => Name of the Event,

Rate_Factor => Factor of Rate Divisor)

Event_Handler = (

Type => Delay,

Input_Event => Name of the Event,

Output_Event => Name of the Event,

Delay_Max_Interval => Maximum delay interval,

Delay_Min_Interval => Minimum delay interval)

Event_Handler = (

Type => Offset,

Input_Event => Name of the Event,

Output_Event => Name of the Event,
Description of the MAST Model- 10/2/25 - Page 41

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Delay_Max_Interval => Maximum delay interval,

Delay_Min_Interval => Minimum delay interval,

Referenced_Event => Name of referenced event)

10. Results File Format

The results of the analysis are stored in the results file and are attached to different elements of
the MAST model:

• the overall system:

- slacks

- traces

• transactions:

- timing results: for each output event global response times (worst, best average)
and maximum output jitter

- transaction-specific slack

• processing resources:

- slack

- utilization

- scheduler queue size

• operations:

- slack

• scheduling servers:

- priorities

• shared resources:

- priority ceilings

- queue size

The text special-purpose format of the results file is described next, and appendix A describes
the corresponding XML-Mast Format.

In the text format, the results file follows the same rules as the MAST model file (see Section
6, “Writing the MAST file”). The results file contains objects of the following types, without
any particular ordering imposed:

10.1 Real-Time Situation

The overall system results are relative to a real-time situation that has been analysed, and
contain a set of results (described below) and the following attributes:

• Model_Name: Name of the analysed real-time situation model.
Description of the MAST Model- 10/2/25 - Page 42

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Model_Date: Date of last modification of the analyses real-time situation model, in the
ISO 8601 format YYYY-MM-DDThh:mm:ss.

• Generation_Tool: Quoted text representing the name of the tool that generated the
results.

• Generation_Profile: Quoted text representing the command and options used to invoke
the tool for the generation of the results.

• Generation_Date: Date of generation of results, in the ISO 8601 format YYYY-MM-

DDThh:mm:ss.

Real_Time_Situation (

Model_Name => Identifier,

Model_Date => YYYY-MM-DDThh:mm:ss,

Generator_Tool => “Text”,

Generation_Profile => “Text”,

Generation_Date => YYYY-MM-DDThh:mm:ss,

Results => (

Result 1,

Result 2,

...));

The specific results that may refer to a real-time situation are:

• Slack: If positive, it is the percentage by which all the execution times of all the
operations in the real-time situation may be increased while still keeping the system
schedulable. If negative, it is the percentage by which all the execution times of all the
operations in the real-time situation have to be decreased to make the system
schedulable. If zero, it means that the system is just schedulable.

Result = (

Type => Slack,

Value => Percentage)

• Trace: It describes the name of a file where trace information on the simulation of a
MAST real-time situation can be found.

Result = (

Type => Trace,

Pathname => Pathname)

10.2 Transaction

The transaction results are relative to a transaction in the system that has been analysed, and
contain the name of the transaction and a set of results (described below), using the following
format:

Transaction (

Name => Identifier,

Results => (

Result 1,
Description of the MAST Model- 10/2/25 - Page 43

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Result 2,

...));

The specific results that may refer to a real-time situation are:

• Slack: If positive, it is the percentage by which all the execution times of all the
operations used by the transaction may be increased while still keeping the system
schedulable. If negative, it is the percentage by which all the execution times of all the
operations used by the transaction have to be decreased to make the system schedulable.
If zero, it means that the transaction is just schedulable.

Result = (

Type => Slack,

Value => Percentage)

• Timing_Result: Represents the timing results of a relevant event of the transaction and
obtainable by a schedulability analysis tool. Its attributes are:

- Event_Name: Name of event. The timing results always corresponds to the activity
or activities that generated the event represented by this name.

- Worst_Local_Response_Time: Worst local response time, measured as the worst
difference between the activation and completion times of the activity that
generated the event with this result.

- Best_Local_Response_Time: Best local response time, measured as the best
difference between the activation and completion times of the activity that
generated the event with this result.

- Worst_Blocking_Time: Worst-case delay caused by the used of shared resources. It
represents the blocking time for the segment of activities preceding the referenced
event. A segment of activities is a set of consecutive activities (consecutive in the
transaction graph) that are run by the same scheduling server.

- Num_Of_Suspensions: Maximum number of suspensions caused by shared
resources, for the segment of activities preceding the referenced event.

- Worst_Global_Response_Times: List of global response times each representing
the worst-case response time relative to a particular input event.

- Best_Global_Response_Times: List of global response times each representing the
best-case response time relative to a particular input event.

- Jitters: List of maximum output jitter values, each representing the maximum jitter
relative to a particular input event.

Result = (

Type => Timing_Result,

Event_Name => Identifier,

Worst_Local_Response_Time => Time,

Best_Local_Response_Time => Time,

Worst_Blocking_Time => Time,

Num_Of_Suspensions => Natural,

Worst_Global_Response_Times => (

Global_Response_Time 1,
Description of the MAST Model- 10/2/25 - Page 44

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Global_Response_Time 2,

...),

Best_Global_Response_Times => (

Global_Response_Time 1,

Global_Response_Time 2,

...),

Jitters => (

Global_Response_Time 1,

Global_Response_Time 2,

...));

• Simulation_Timing_Result: Represents the timing results of a relevant event of the
transaction and obtained by a simulation tool. Its attributes are those of a Timing_Result
plus the following:

- Avg_Local_Response_Time: Average local response time, measured as the average
difference between the activation and completion times of the activity that
generated the event with this result.

- Avg_Blocking_Time: Average-case delay caused by the used of shared resources. It
represents the average blocking time for the segment of activities preceding the
referenced event. A segment of activities is a set of consecutive activities
(consecutive in the transaction graph) that are run by the same scheduling server.

- Max_Preemption_Time: Maximum time spent by the activity preceding the event
in the scheduler ready queue, while having been activated by a specific event
instance. This is equivalent to the time the activity is being preempted by higher
priority activities.

- Suspension_Time: Maximum time spent in the activity input queue by the event
that triggered the activity preceding the event to which this result is attached. This
time is larger than zero only if the triggering event arrives while the activity is still
busy processing a previous event.

- Num_Of_Queued_Activations: Maximum number of pending activations in the
input queue of the activity preceding the referenced event.

- Avg_Global_Response_Times: List of global response times each representing the
average-case response time relative to a particular input event.

- Local_Miss_Ratios: List of local miss ratios, each representing the ratio of events
that have missed a specific soft local deadline.

- Global_Miss_Ratios: List of global miss ratios, each representing the ratio of
events generated at a specific input event channel, that have missed a specific soft
global deadline.

Result = (

Type => Simulation_Timing_Result,

Event_Name => Identifier,

Worst_Local_Response_Time => Time,

Avg_Local_Response_Time => Time,

Best_Local_Response_Time => Time,

Worst_Blocking_Time => Time,

Avg_Blocking_Time => Time,
Description of the MAST Model- 10/2/25 - Page 45

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Max_Preemption_Time => Time,

Suspension_Time => Time,

Num_Of_Suspensions => Natural,

Num_Of_Queued_Activations => Natural,

Worst_Global_Response_Times => (

Global_Response_Time 1,

Global_Response_Time 2,

...),

Avg_Global_Response_Times => (

Global_Response_Time 1,

Global_Response_Time 2,

...),

Best_Global_Response_Times => (

Global_Response_Time 1,

Global_Response_Time 2,

...),

Jitters => (

Global_Response_Time 1,

Global_Response_Time 2,

...),

Local_Miss_Ratios => (

Miss_Ratio 1,

Miss_Ratio 2,

...),

Global_Miss_Ratios => (

Global_Miss_Ratio 1,

Global_Miss_Ratio 2,

...));

A Global_Response_Time contains the following attributes:

• Referenced_Event: Name of referenced input event, used for calculating the response
time.

• Time_Value: Global response time, calculated as the difference between the arrival of the
input referenced event and the generation of the event to which the result is attached, and
adding the input jitter.

Global_Response_Time = (

Referenced_Event => Identifier,

Time_Value => Time),

A Miss_Ratio contains the following attributes:

• Deadline: Soft deadline against which the response time is compared to determine the
ration of missed deadlines.

• Ratio: Percentage of events that have missed the soft deadline, relative to the total
number of events.

Miss_Ratio = (

Deadline => Time,

Ratio => Percentage),
Description of the MAST Model- 10/2/25 - Page 46

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
A Global_Miss_Ratio contains the following attributes:

• Referenced_Event: Name of referenced input event, used for calculating the response
time.

• Miss_Ratios: List of miss ratios.

Global_Miss_Ratio = (

Referenced_Event => Identifier,

Miss_Ratios => (

Miss_Ratio 1,

Miss_Ratio 2,

...)),

10.3 Processing_Resource

The processing resource results are relative to a processing resource in the system that has been
analysed, and contain the name of the resource and a set of results (described below), using the
following format:

Processing_Resource(

Name => Identifier,

Results => (

Result 1,

Result 2,

...));

The specific results that may refer to a processing resource are:

• Slack: If positive, it is the percentage by which all the execution times of all the
operations executed in the processing resource may be increased while still keeping the
system schedulable. If negative, it is the percentage by which all the execution times of
all the operations executed in the processing resource have to be decreased to make the
system schedulable. If zero, it means that the processing resource is just schedulable.

Result = (

Type => Slack,

Value => Processing resource slack)

• Utilization: This result measures the relation, in percentage, between the time that the
processing resource is being used to execute activities, and the total elapsed time. It may
contain the following attributes:

- Total: overall utilization in the processing result.

Result = (

Type => Utilization,

Total => percentage)
Description of the MAST Model- 10/2/25 - Page 47

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Detailed_Utilization: This result measures the relation, in percentage, between the time
that the processing resource is being used to execute activities, and the total elapsed time.
This result can only be present if no “Utilization” result is present. It may contain the
following attributes:

- Total: overall utilization in the processing result.

- Application: utilization of the processing resource by the application code, i.e.,
without the overhead elements included in the MAST model: context and interrupt
switches, network drivers, and system timers.

- Context_Switch: utilization of the processing resource by context and interrupt
switch activities.

- Timer: utilization of the processing resource by the system timer overhead.

- Driver: utilization of the processing resource by the network drivers overhead.

Result = (

Type => Detailed_Utilization,

Total => percentage,

Application => percentage,

Context_Switch => percentage,

Timer => percentage,

Driver => percentage)

• Ready_Queue_Size: It contains the following attributes:

- Max_Num: Maximum number of scheduling servers that are simultaneously ready
in the processing resource.

Result = (

Type => Ready_Queue_Size,

Max_Num => Positive)

10.4 Operation

The operation results are relative to an operation in the system that has been analysed, and
contain the name of the operation and a set of results (described below), using the following
format:

Operation (

Name => Name of the operation,

Results => (

Result 1,

Result 2,

...));

The specific results that may refer to an operation are:
Description of the MAST Model- 10/2/25 - Page 48

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Slack: If positive, it is the percentage by which the execution times of the operation may
be increased while still keeping the system schedulable. If negative, it is the percentage
by which the execution times of the operation have to be decreased to make the system
schedulable. If zero, it means that the system is just schedulable with regard to this
operation.

Result = (

Type => Slack,

Value => Percentage)

10.5 Scheduling Server

The scheduling server results are relative to a scheduling server in the system that has been
analysed, and contain the name of the scheduling server and a set of results (described below),
using the following format:

Scheduling_Server (

Name => Name of the scheduling server,

Results => (

Result 1,

Result 2,

...));

The specific results that may refer to a scheduling server are:

• Scheduling_Parameters: The scheduling parameters that were used in the analysed
system. Usually they are only written to the file if they were automatically calculated by
the scheduling parameters assignment tools. See section on “Scheduling Parameters” for
a description of their format.

Result = (

Type => Scheduling_Parameters,

Server_Sched_Parameters => Sched_Parameters)

• Synchronization_Parameters: The synchronization parameters that were used in the
analysed system. Usually they are only written to the file if they were automatically
calculated by the scheduling parameters assignment tools. See section on
“Synchronization Parameters” for a description of their format.

Result = (

Type => Synchronization_Parameters,

Server_Synch_Parameters => Synch_Parameters)

10.6 Shared Resource

The shared resource results are relative to a shared resource in the system that has been
analysed, and contain the name of the shared resource and a set of results (described below),
using the following format:

Shared_Resource (

Name => Name of the shared resource,
Description of the MAST Model- 10/2/25 - Page 49

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Results => (

Result 1,

Result 2,

...));

The specific results that may refer to a shared resource are:

• Ceiling: The priority ceiling automatically calculated by the MAST tool. Only shared
resources of the type Immediate_Ceiling_Resource may have this type of result.

Result = (

Type => Priority_Ceiling,

Ceiling => Any_Priority)

• Preemption Level: The preemption level automatically calculated by the MAST tool.
Only shared resources of the type SRP_Resource may have this type of result.

Result = (

Type => Preemption_Level,

Level => Preemption_Level)

• Queue_Size: Size of the waiting queue of the shared resource. It contains the following
attributes:

- Max_Num: Maximum number of threads that were queued in the shared resource,
waiting to lock it.

Result = (

Type => Queue_Size,

Max_Num => Maximum number)

• Utilization: It measures the total time that the shared resource has been locked during a
simulation, relative to the total elapsed time

Result = (

Type => Utilization,

Total => percentage)

11. Traces File Format

The traces that are generated by some of the Mast tools are stored in the traces file. They
contain four data block:

• the real-time situation description:

• Message types description.

• Message sources description.

• Messages list.
Description of the MAST Model- 10/2/25 - Page 50

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
The overall system data are relative to a real-time situation that has been analysed, to the tools
that has generate the trace and to the time range. It contains the following attributes:

• Model_Name: Name of the analysed real-time situation model.

• Model_Date: Date of last modification of the analyses real-time situation model, in the
ISO 8601 format YYYY-MM-DDThh:mm:ss.

• Generation_Tool: Text representing the name of the tool that generated the traces.

• Generation_Profile: Text representing the command and options used to invoke the tool
for the generation of the traces.

• Generation_Date: Date of generation of traces, in the ISO 8601 format YYYY-MM-

DDThh:mm:ss.

• Init-Time: Start time of generation of traces, in the experiment scale time.

• End-Time: End time of generation of traces, in the experiment scale time

TRACE_FILE (
Model_Name => Identifier,

Model_Date => YYYY-MM-DDThh:mm:ss,

Generator_Tool => “Text”,

Generation_Profile => “Text”,

Generation_Date => YYYY-MM-DDThh:mm:ss,

Init_Time => Float,

End_Time => Float,

Msg_Type_List => (

Msg_Type 1,

Msg_Type 2,

...)

Src_List => (

Src 1,

Src 2,

...)

Msg_List => (

Msg 1,

Msg 2,

...));

The list included in a traces register of a real-time situation traces are:

• Msg_Type_List: List of types of messages referenced in the traces register. Each message
type is described by:

- Mid: Message type identification that is a natural number.

- Type: Explanatory text of the message type (it is optional).

Msg_Type = (

Mid => Natural,

Type => String)
Description of the MAST Model- 10/2/25 - Page 51

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
• Src_List: List of objects of the real-time situation model that are able to generate
messages in the trace. Each source object is described by:

- Sid: Source identification that is an integer number.

- Name: Textual identifier of the source object in the model (it is optional).

- Type: Type of the object in the model domain.

Src = (

Sid => Integer,

Name => Identifier,

Type => String)

• Msg_List: List of timed message that build up the traces register. Each message item is
described by:

- Time: Time of message generation in the experiment scale time.

- Sid: Identifier of source object that has generate the message.

- Mid: Identifier of the type of the message.

Msj = (

Time => Float,

Sid => Integer,

Mid => Natural)

12. Example of a Single-Processor System: CASEVA

CASEVA is a robot designed for automatic welding of junctions between pieces that don’t
have axial symmetry. It has an embedded controller that uses a VME-bus based computer (an
HP 743rt) running HP-RT as its real-time operating system. The application software is
concurrent, and written in Ada. The basic characteristics of its tasks are shown in Figure 7.

Communication and synchronization between the different tasks is asynchronous, and based
on shared resources implemented using Ada’s protected objects. In this document we present a
simplified view of the shared resources and associated protected operations, to make the
description shorter. The following table shows the characteristics of the simplified protected
objects and operations.

Shared Resource Operation
WCET
(s) Used by

Servo_Data Read_New_Point
New_Point

87
54

SC
TP

Arm Read_Axis_Positions
Control_Servos

135
99

SC, R
SC

Lights Turn_On
Turn_Off
Time_Lights

74
71
119

TP
TP
LM
Description of the MAST Model- 10/2/25 - Page 52

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
The MAST description of this system is shown next:

-- Real_time Situation

Model(

Model_Name=> Caseva,

Model_Date=> 2000-01-01);

-- Processing Resources

Processing_Resource (

Type => Fixed_Priority_Processor,

Name => Processor_1,

Worst_Context_Switch => 102.5,

System_Timer =>

 (Type => Alarm_Clock,

 Worst_Overhead=> 50));

-- Scheduling Servers

Scheduling_Server (

Type => Fixed_Priority,

Name => Servo_Control,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

Alarms Read_All
Set

78
59

SC, TP, R
SC, TP

Error_Log Notify_Error
Get_Error_From_Queue

85
79

TP
ML

Shared Resource Operation
WCET
(s) Used by

SC: Servo_
Control

T=5000s
C=1080s
Prio=415

TP: Trajectory_
Planning

T=50000s
C=9045s
Prio=412

LM: Light_
Manager

T=100000s
C=219s
Prio=410

R: Reporter

T=1000000s
C=72952s
Prio=80

ML: Message_
Logger

T=
C=46820s
Prio=70

Figure 7. Basic Characteristics of the tasks of the CASEVA controller
Description of the MAST Model- 10/2/25 - Page 53

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
The_Priority => 415),

Server_Processing_Resource => Processor_1);

Scheduling_Server (

Type => Fixed_Priority,

Name => Trajectory_Planning,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 412),

Server_Processing_Resource=> Processor_1);

Scheduling_Server (

Type => Fixed_Priority,

Name => Light_Manager,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 410),

Server_Processing_Resource=> Processor_1);

Scheduling_Server (

Type => Fixed_Priority,

Name => Reporter,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 80),

Server_Processing_Resource=> Processor_1);

Scheduling_Server (

Type => Fixed_Priority,

Name => Message_Logger,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 70),

Server_Processing_Resource=> Processor_1);

-- Resources

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Servo_Data);

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Arm);

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Lights);

Shared_Resource (

Type => Immediate_Ceiling_Resource,
Description of the MAST Model- 10/2/25 - Page 54

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Name => Alarms);

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Error_Log);

-- Operations

-- Critical Sections

Operation (

Type => Simple,

Name => Read_New_Point,

Worst_Case_Execution_Time => 87,

 Shared_Resources_List=> (Servo_Data));

Operation (

Type => Simple,

Name => New_Point,

Worst_Case_Execution_Time => 54,

 Shared_Resources_List=> (Servo_Data));

Operation (

Type => Simple,

Name => Read_Axis_Positions,

Worst_Case_Execution_Time => 135,

 Shared_Resources_List=> (Arm));

Operation (

Type => Simple,

Name => Control_Servos,

Worst_Case_Execution_Time => 99,

 Shared_Resources_List=> (Arm));

Operation (

Type => Simple,

Name => Turn_On,

Worst_Case_Execution_Time => 74,

 Shared_Resources_List=> (Lights));

Operation (

Type => Simple,

Name => Turn_Off,

Worst_Case_Execution_Time => 71,

 Shared_Resources_List=> (Lights));

Operation (

Type => Simple,

Name => Time_Lights,

Worst_Case_Execution_Time => 119,
Description of the MAST Model- 10/2/25 - Page 55

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Shared_Resources_List=> (Lights));

Operation (

Type => Simple,

Name => Read_All_Alarms,

Worst_Case_Execution_Time => 78,

 Shared_Resources_List=> (Alarms));

Operation (

Type => Simple,

Name => Set,

Worst_Case_Execution_Time => 59,

 Shared_Resources_List=> (Alarms));

Operation (

Type => Simple,

Name => Notify_Error,

Worst_Case_Execution_Time => 85,

 Shared_Resources_List=> (Error_Log));

Operation (

Type => Simple,

Name => Get_Error_From_Queue,

Worst_Case_Execution_Time => 79,

 Shared_Resources_List=> (Error_Log));

-- Enclosing operations

Operation (

Type => Enclosing,

Name => Servo_Control,

Worst_Case_Execution_Time => 1080,

Composite_Operation_List =>

(Read_New_Point,Read_Axis_Positions,Control_Servos,

 Read_All_Alarms,Set));

Operation (

Type => Enclosing,

Name => Trajectory_Planning,

Worst_Case_Execution_Time => 9045,

Composite_Operation_List =>

(New_Point, Turn_On, Turn_Off,

 Read_All_Alarms,Set,Notify_Error));

Operation (

Type => Enclosing,

Name => Light_Manager,

Worst_Case_Execution_Time => 119,

Composite_Operation_List =>

(Time_Lights));
Description of the MAST Model- 10/2/25 - Page 56

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Operation (

Type => Enclosing,

Name => Reporter,

Worst_Case_Execution_Time => 72952,

Composite_Operation_List =>

(Read_Axis_Positions,Read_All_Alarms));

Operation (

Type => Enclosing,

Name => Message_Logger,

Worst_Case_Execution_Time => 46820,

Composite_Operation_List =>

(Get_Error_From_Queue));

-- Transactions

Transaction (

Type => Regular,

Name => Servo_Control,

External_Events => (

(Type => Periodic,

 Name => E1,

 Period => 5000)),

Internal_Events => (

(Type => regular,

 name => O1,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 5000,

 Referenced_Event => E1))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E1,

 Output_Event => O1,

 Activity_Operation => Servo_Control,

 Activity_Server=> Servo_Control)));

Transaction (

Type => Regular,

Name => Trajectory_Planning,

External_Events => (

(Type => Periodic,

 Name => E2,

 Period => 50000)),

Internal_Events => (

(Type => regular,

 name => O2,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 50000,
Description of the MAST Model- 10/2/25 - Page 57

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Referenced_Event => E2))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E2,

 Output_Event => O2,

 Activity_Operation => Trajectory_Planning,

 Activity_Server=> Trajectory_Planning)));

Transaction (

Type => Regular,

Name => Light_Manager,

External_Events => (

(Type => Periodic,

 Name => E3,

 Period => 100000)),

Internal_Events => (

(Type => regular,

 name => O3,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 100000,

 referenced_event => E3))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E3,

 Output_Event => O3,

 Activity_Operation => Light_Manager,

 Activity_Server=> Light_Manager)));

Transaction (

Type => Regular,

Name => Reporter,

External_Events => (

(Type => Periodic,

 Name => E4,

 Period => 1000000)),

Internal_Events => (

(Type => regular,

 name => O4,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 1000000,

 referenced_event => E4))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E4,

 Output_Event => O4,

 Activity_Operation => Reporter,

 Activity_Server=> Reporter)));

Transaction (
Description of the MAST Model- 10/2/25 - Page 58

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Type => Regular,

Name => Message_Logger,

External_Events => (

(Type => Unbounded,

 Name => E5,

 Avg_Interarrival=> 1000000)),

Internal_Events => (

(Type => regular,

 name => O5)),

Event_Handlers => (

(Type => Activity,

 Input_Event => E5,

 Output_Event => O5,

 Activity_Operation => Message_Logger,

 Activity_Server=> Message_Logger)));

13. Example of Linear_Transactions: RMT

The following example will show the aspect of the MAST file format that has been chosen to
represent the timing behaviour of real-time applications. The example is a simplification of the
control system of a teleoperated robot. This is a distributed system with two specialized nodes:
a local robot controller, and a remote teleoperation station, where the operator manipulates the
controls, and gets information about the system status. Figure 8 shows a diagram of the
software architecture. The system has three transactions; one of them, the main control loop,
implies execution in different processing resources, and has a global end-to-end deadline.
Communication is through an ethernet network used in master-slave mode to achieve hard
real-time behaviour.

In the MAST description we can see that we declare, in this order, the processing resources, the
scheduling servers, the shared resources, the operations, and finally, the transactions. The
timing requirements are embedded in the events described in the transactions. The timers (and
also the network drivers) are embedded in the description of the processing resources. The
scheduling parameters are embedded in the description of the scheduling servers. Finally, the
events and event handlers are embedded in the description of the transactions. The description
is shown next:

-- Real-Time Situation

Model(

GUI

Trajectory
Planner

Reporter

Command
Manager

Servo
Control

Data
Sender

Command
Message

Status
Message

Teleoperation Station Ethernet Network Local Controller

1sec

50ms
5ms

Figure 8. Architecture of the teleoperated robot controller
Description of the MAST Model- 10/2/25 - Page 59

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Model_Name=> RMT,

Model_Date=> 2002-11-23T10:22:33);

-- Processing Resources

Processing_Resource (

Type => Fixed_Priority_Processor,

Name => Teleoperation_Station,

Worst_Context_Switch => 102.5,

System_Timer =>

 (Type => Alarm_Clock,

 Worst_Overhead=> 50));

Processing_Resource (

Type => Fixed_Priority_Processor,

Name => Local_Controller,

Worst_Context_Switch => 15,

System_Timer =>

(Type => Alarm_Clock,

 Worst_Overhead=> 10));

Processing_Resource (

Type => Fixed_Priority_Network,

Name => Ethernet,

Transmission => Half_Duplex);

-- Scheduling Servers

Scheduling_Server (

Type => Fixed_Priority,

Name => Servo_Control,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 415),

Server_Processing_Resource=> Local_Controller);

Scheduling_Server (

Type => Fixed_Priority,

Name => Command_Manager,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 412),

Server_Processing_Resource=> Local_Controller);

Scheduling_Server (

Type => Fixed_Priority,

Name => Data_Sender,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 410),

Server_Processing_Resource=> Local_Controller);
Description of the MAST Model- 10/2/25 - Page 60

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Scheduling_Server (

Type => Fixed_Priority,

Name => Trajectory_Planner,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 80),

Server_Processing_Resource=> Teleoperation_Station);

Scheduling_Server (

Type => Fixed_Priority,

Name => Reporter,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 79),

Server_Processing_Resource=> Teleoperation_Station);

Scheduling_Server (

Type => Fixed_Priority,

Name => GUI,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 60),

Server_Processing_Resource=> Teleoperation_Station);

-- Message scheduler

Scheduling_Server (

Type => Fixed_Priority,

Name => Message_Scheduler,

Server_Sched_Parameters=> (

Type => Fixed_Priority_policy,

The_Priority => 1),

Server_Processing_Resource=> Ethernet);

-- Resources

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Status);

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Commands);

Shared_Resource (

Type => Immediate_Ceiling_Resource,

Name => Servo_Data);

-- Operations
Description of the MAST Model- 10/2/25 - Page 61

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
-- Critical Sections

Operation (

Type => Simple,

Name => Read_Status,

Worst_Case_Execution_Time => 87,

 Shared_Resources_List=> (Status));

Operation (

Type => Simple,

Name => Write_Status,

Worst_Case_Execution_Time => 54,

 Shared_Resources_List=> (Status));

Operation (

Type => Simple,

Name => Set_Command,

Worst_Case_Execution_Time => 135,

 Shared_Resources_List=> (Commands));

Operation (

Type => Simple,

Name => Get_Command,

Worst_Case_Execution_Time => 99,

 Shared_Resources_List=> (Commands));

Operation (

Type => Simple,

Name => Read_Servos,

Worst_Case_Execution_Time => 74,

 Shared_Resources_List=> (Servo_Data));

Operation (

Type => Simple,

Name => Write_Servos,

Worst_Case_Execution_Time => 71,

 Shared_Resources_List=> (Servo_Data));

-- Enclosing operations

Operation (

Type => Enclosing,

Name => Command_Manager,

Worst_Case_Execution_Time => 9045,

Composite_Operation_List =>

(Write_Servos));

Operation (

Type => Enclosing,

Name => Data_Sender,

Worst_Case_Execution_Time => 1220,
Description of the MAST Model- 10/2/25 - Page 62

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Composite_Operation_List =>

(Read_Servos));

Operation (

Type => Enclosing,

Name => Servo_Control,

Worst_Case_Execution_Time => 1019,

Composite_Operation_List =>

(Read_Servos,Write_Servos));

Operation (

Type => Enclosing,

Name => Trajectory_Planner,

Worst_Case_Execution_Time => 7952,

Composite_Operation_List =>

(Get_Command));

Operation (

Type => Enclosing,

Name => Reporter,

Worst_Case_Execution_Time => 2086,

Composite_Operation_List =>

(Write_Status));

Operation (

Type => Enclosing,

Name => GUI,

Worst_Case_Execution_Time => 146820,

Composite_Operation_List =>

(Read_Status,Set_Command));

-- Network operations

Operation (

Type => Simple,

Name => Command_Message,

Worst_Case_Execution_Time => 4850);

Operation (

Type => Simple,

Name => Status_Message,

Worst_Case_Execution_Time => 5080);

-- Transactions

Transaction (

Type => Regular,

Name => Servo_Control,

External_Events => (
Description of the MAST Model- 10/2/25 - Page 63

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
(Type => Periodic,

 Name => E1,

 Period => 5000)),

Internal_Events => (

(Type => regular,

 name => O1,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 5000,

 referenced_event => E1))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E1,

 Output_Event => O1,

 Activity_Operation => Servo_Control,

 Activity_Server=> Servo_Control)));

Transaction (

Type => Regular,

Name => Main_Control_Loop,

External_Events => (

(Type => Periodic,

 Name => E2,

 Period => 50000)),

Internal_Events => (

(Type => regular,

 name => O2),

(Type => regular,

 name => O3),

(Type => regular,

 name => O4),

(Type => regular,

 name => O5),

(Type => regular,

 name => O6),

(Type => regular,

 name => O7,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 50000,

 referenced_event => E2))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E2,

 Output_Event => O2,

 Activity_Operation => Trajectory_Planner,

 Activity_Server=> Trajectory_Planner),

(Type => Activity,

 Input_Event => O2,

 Output_Event => O3,

 Activity_Operation => Command_Message,
Description of the MAST Model- 10/2/25 - Page 64

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Activity_Server=> Message_Scheduler),

(Type => Activity,

 Input_Event => O3,

 Output_Event => O4,

 Activity_Operation => Command_Manager,

 Activity_Server=> Command_Manager),

(Type => Activity,

 Input_Event => O4,

 Output_Event => O5,

 Activity_Operation => Data_Sender,

 Activity_Server=> Data_Sender),

(Type => Activity,

 Input_Event => O5,

 Output_Event => O6,

 Activity_Operation => Status_Message,

 Activity_Server=> Message_Scheduler),

(Type => Activity,

 Input_Event => O6,

 Output_Event => O7,

 Activity_Operation => Reporter,

 Activity_Server=> Reporter)));

Transaction (

Type => Regular,

Name => GUI,

External_Events => (

(Type => Periodic,

 Name => E3,

 Period => 1000000)),

Internal_Events => (

(Type => regular,

 name => O8,

 Timing_Requirements => (

 Type => Hard_Global_Deadline,

 Deadline => 1000000,

 referenced_event => E3))),

Event_Handlers => (

(Type => System_Timed_Activity,

 Input_Event => E3,

 Output_Event => O8,

 Activity_Operation => GUI,

 Activity_Server=> GUI)));
Description of the MAST Model- 10/2/25 - Page 65

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
14. Example of Multipath_Transactions

Example of steel bars inspection:

Software Architecture for this example:

Ultrasonic
Scanner Robot

Controller

Image
Processor

Bus_IO

Computer

Sistema de Inspección de planchas

Processor1 Processor2 Processor3

Acq. 1

Acq. 2

Acq. 3

Image 1

Image 2

Ultrasonic
sensor

Task

Message queue

MQ1

MQ3

Pro. 1

Pro. 2

MQ21

MQ22

MQ41

MQ42

Act. 1

Act. 2

Act. 3

Act. 4

Processor4

Network
Description of the MAST Model- 10/2/25 - Page 66

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
Multipath transaction model for this example:

Input File for the Multipath Example
Model (
 Model_Name => steel_bars,
 Model_Date => 2000-01-01,
 System_Pip_Behaviour=> STRICT);

Processing_Resource (
 Type => Regular_Processor,
 Name => processor_1,
 Max_Interrupt_Priority => 32767,
 Min_Interrupt_Priority => 1,
 Worst_ISR_Switch => 0.00,
 Avg_ISR_Switch => 0.00,
 Best_ISR_Switch => 0.00,
 Speed_Factor => 1.00);

Processing_Resource (
 Type => Regular_Processor,
 Name => processor_2,
 Max_Interrupt_Priority => 32767,
 Min_Interrupt_Priority => 1,
 Worst_ISR_Switch => 0.00,
 Avg_ISR_Switch => 0.00,
 Best_ISR_Switch => 0.00,
 Speed_Factor => 1.00);

Processing_Resource (
 Type => Regular_Processor,
 Name => processor_3,
 Max_Interrupt_Priority => 32767,
 Min_Interrupt_Priority => 1,
 Worst_ISR_Switch => 0.00,
 Avg_ISR_Switch => 0.00,
 Best_ISR_Switch => 0.00,
 Speed_Factor => 1.00);

Processing_Resource (
 Type => Regular_Processor,
 Name => processor_4,
 Max_Interrupt_Priority => 32767,
 Min_Interrupt_Priority => 1,

AO5

ForkPRO1

AR1

AO4

AO1

PRO2M4ACQ3 Fork
Ultra

img1

img2

Merge

ACQ2

ACQ1 ACT1

ACT2

ACT4M6

ACT3M5

AR3

AR2

AO10 AO11

AR5

AR4

AO13

AO12

AO15

AO14

AO8

AO7

AO9

AO2

M1 AO3

M2

*

*+Fork
Trigger

M31

M32

AO62

AO61
Description of the MAST Model- 10/2/25 - Page 67

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Worst_ISR_Switch => 0.00,
 Avg_ISR_Switch => 0.00,
 Best_ISR_Switch => 0.00,
 Speed_Factor => 1.00);

Processing_Resource (
 Type => Packet_Based_Network,
 Name => network,
 Transmission => HALF_DUPLEX,
 Throughput => 1000.0,
 Max_Blocking => 0.00,
 Max_Packet_Size => 1000.0,
 Min_Packet_Size => 10.00,
 Speed_Factor => 1.00);

Scheduler (
 Type => Primary_Scheduler,
 Name => processor_1,
 Host => processor_1,
 Policy =>
 (Type => Fixed_Priority,
 Worst_Context_Switch => 0.00,
 Avg_Context_Switch => 0.00,
 Best_Context_Switch => 0.00,
 Max_Priority => 32767,
 Min_Priority => 1));

Scheduler (
 Type => Primary_Scheduler,
 Name => processor_2,
 Host => processor_2,
 Policy =>
 (Type => Fixed_Priority,
 Worst_Context_Switch => 0.00,
 Avg_Context_Switch => 0.00,
 Best_Context_Switch => 0.00,
 Max_Priority => 32767,
 Min_Priority => 1));

Scheduler (
 Type => Primary_Scheduler,
 Name => processor_3,
 Host => processor_3,
 Policy =>
 (Type => Fixed_Priority,
 Worst_Context_Switch => 0.00,
 Avg_Context_Switch => 0.00,
 Best_Context_Switch => 0.00,
 Max_Priority => 32767,
 Min_Priority => 1));

Scheduler (
 Type => Primary_Scheduler,
 Name => processor_4,
 Host => processor_4,
 Policy =>
 (Type => Fixed_Priority,
 Worst_Context_Switch => 0.00,
 Avg_Context_Switch => 0.00,
 Best_Context_Switch => 0.00,
 Max_Priority => 32767,
 Min_Priority => 1));

Scheduler (
 Type => Primary_Scheduler,
Description of the MAST Model- 10/2/25 - Page 68

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Name => network,
 Host => network,
 Policy =>
 (Type => FP_Packet_Based,
 Packet_Overhead_Max_Size => 0.00,
 Packet_Overhead_Avg_Size => 0.00,
 Packet_Overhead_Min_Size => 0.00,
 Max_Priority => 32767,
 Min_Priority => 1));

Scheduling_Server (
 Type => Regular,
 Name => sacq1,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 1,
 Preassigned => NO),
 Scheduler => processor_1);

Scheduling_Server (
 Type => Regular,
 Name => sacq2,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 2,
 Preassigned => NO),
 Scheduler => processor_1);

Scheduling_Server (
 Type => Regular,
 Name => sacq3,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 3,
 Preassigned => NO),
 Scheduler => processor_1);

Scheduling_Server (
 Type => Regular,
 Name => spro1,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 1,
 Preassigned => NO),
 Scheduler => processor_2);

Scheduling_Server (
 Type => Regular,
 Name => spro2,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 2,
 Preassigned => NO),
 Scheduler => processor_2);

Scheduling_Server (
 Type => Regular,
 Name => sact1,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 1,
 Preassigned => NO),
 Scheduler => processor_3);

Scheduling_Server (
Description of the MAST Model- 10/2/25 - Page 69

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Type => Regular,
 Name => sact2,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 1,
 Preassigned => NO),
 Scheduler => processor_4);

Scheduling_Server (
 Type => Regular,
 Name => sact3,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 2,
 Preassigned => NO),
 Scheduler => processor_4);

Scheduling_Server (
 Type => Regular,
 Name => sact4,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 2,
 Preassigned => NO),
 Scheduler => processor_3);

Scheduling_Server (
 Type => Regular,
 Name => sm1,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 1,
 Preassigned => NO),
 Scheduler => network);

Scheduling_Server (
 Type => Regular,
 Name => sm2,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 3,
 Preassigned => NO),
 Scheduler => network);

Scheduling_Server (
 Type => Regular,
 Name => sm3,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 2,
 Preassigned => NO),
 Scheduler => network);

Scheduling_Server (
 Type => Regular,
 Name => sm4,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 4,
 Preassigned => NO),
 Scheduler => network);

Scheduling_Server (
 Type => Regular,
 Name => sm5,
Description of the MAST Model- 10/2/25 - Page 70

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 5,
 Preassigned => NO),
 Scheduler => network);

Scheduling_Server (
 Type => Regular,
 Name => sm6,
 Server_Sched_Parameters =>
 (Type => Fixed_Priority_Policy,
 The_Priority => 6,
 Preassigned => NO),
 Scheduler => network);

Operation (
 Type => Simple,
 Name => acq1,
 Worst_Case_Execution_Time => 50.00,
 Avg_Case_Execution_Time => 50.00,
 Best_Case_Execution_Time => 50.00);

Operation (
 Type => Simple,
 Name => acq2,
 Worst_Case_Execution_Time => 50.00,
 Avg_Case_Execution_Time => 50.00,
 Best_Case_Execution_Time => 50.00);

Operation (
 Type => Simple,
 Name => acq3,
 Worst_Case_Execution_Time => 820.00,
 Avg_Case_Execution_Time => 820.00,
 Best_Case_Execution_Time => 820.00);

Operation (
 Type => Simple,
 Name => pro1,
 Worst_Case_Execution_Time => 100.00,
 Avg_Case_Execution_Time => 100.00,
 Best_Case_Execution_Time => 100.00);

Operation (
 Type => Simple,
 Name => pro2,
 Worst_Case_Execution_Time => 750.00,
 Avg_Case_Execution_Time => 750.00,
 Best_Case_Execution_Time => 750.00);

Operation (
 Type => Simple,
 Name => act1,
 Worst_Case_Execution_Time => 100.00,
 Avg_Case_Execution_Time => 100.00,
 Best_Case_Execution_Time => 100.00);

Operation (
 Type => Simple,
 Name => act2,
 Worst_Case_Execution_Time => 100.00,
 Avg_Case_Execution_Time => 100.00,
 Best_Case_Execution_Time => 100.00);

Operation (
Description of the MAST Model- 10/2/25 - Page 71

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Type => Simple,
 Name => act3,
 Worst_Case_Execution_Time => 725.00,
 Avg_Case_Execution_Time => 725.00,
 Best_Case_Execution_Time => 725.00);

Operation (
 Type => Simple,
 Name => act4,
 Worst_Case_Execution_Time => 740.00,
 Avg_Case_Execution_Time => 740.00,
 Best_Case_Execution_Time => 740.00);

Operation (
 Type => Simple,
 Name => m1,
 Worst_Case_Execution_Time => 100.00,
 Avg_Case_Execution_Time => 100.00,
 Best_Case_Execution_Time => 100.00);

Operation (
 Type => Simple,
 Name => m2,
 Worst_Case_Execution_Time => 100.00,
 Avg_Case_Execution_Time => 100.00,
 Best_Case_Execution_Time => 100.00);

Operation (
 Type => Simple,
 Name => m31,
 Worst_Case_Execution_Time => 25.00,
 Avg_Case_Execution_Time => 25.00,
 Best_Case_Execution_Time => 25.00);

Operation (
 Type => Simple,
 Name => m4,
 Worst_Case_Execution_Time => 150.00,
 Avg_Case_Execution_Time => 150.00,
 Best_Case_Execution_Time => 150.00);

Operation (
 Type => Simple,
 Name => m5,
 Worst_Case_Execution_Time => 230.00,
 Avg_Case_Execution_Time => 230.00,
 Best_Case_Execution_Time => 230.00);

Operation (
 Type => Simple,
 Name => m6,
 Worst_Case_Execution_Time => 250.00,
 Avg_Case_Execution_Time => 250.00,
 Best_Case_Execution_Time => 250.00);

Operation (
 Type => Simple,
 Name => m32,
 Worst_Case_Execution_Time => 25.00,
 Avg_Case_Execution_Time => 25.00,
 Best_Case_Execution_Time => 25.00);

Transaction (
 Type => regular,
 Name => trans1,
Description of the MAST Model- 10/2/25 - Page 72

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 External_Events =>
 ((Type => Periodic,
 Name => trigger,
 Period => 5000.00,
 Max_Jitter => 0.000,
 Phase => 0.000)),
 Internal_Events =>
 ((Type => Regular,
 Name => ao1),
 (Type => Regular,
 Name => ao2),
 (Type => Regular,
 Name => ao3),
 (Type => Regular,
 Name => ao4),
 (Type => Regular,
 Name => ao5),
 (Type => Regular,
 Name => ar1),
 (Type => Regular,
 Name => ar2),
 (Type => Regular,
 Name => ar3),
 (Type => Regular,
 Name => image1),
 (Type => Regular,
 Name => image2),
 (Type => Regular,
 Name => ao7,
 Timing_Requirements =>
 (Type => Hard_Global_Deadline,
 Deadline => 50000.00,
 Referenced_Event => trigger)),
 (Type => Regular,
 Name => a08,
 Timing_Requirements =>
 (Type => Hard_Global_Deadline,
 Deadline => 50000.00,
 Referenced_Event => trigger)),
 (Type => Regular,
 Name => ao61),
 (Type => Regular,
 Name => ao62)),
 Event_Handlers =>
 ((Type => Activity,
 Input_Event => image2,
 Output_Event => ao1,
 Activity_Operation => acq1,
 Activity_Server => sacq1),
 (Type => Activity,
 Input_Event => image1,
 Output_Event => ao2,
 Activity_Operation => acq2,
 Activity_Server => sacq2),
 (Type => Activity,
 Input_Event => ao1,
 Output_Event => ao3,
 Activity_Operation => m1,
 Activity_Server => sm1),
 (Type => Activity,
 Input_Event => ao2,
 Output_Event => ao4,
 Activity_Operation => m2,
 Activity_Server => sm2),
 (Type => Activity,
Description of the MAST Model- 10/2/25 - Page 73

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Input_Event => ar1,
 Output_Event => ao5,
 Activity_Operation => pro1,
 Activity_Server => spro1),
 (Type => Activity,
 Input_Event => ar3,
 Output_Event => ao61,
 Activity_Operation => m31,
 Activity_Server => sm3),
 (Type => Activity,
 Input_Event => ao62,
 Output_Event => a08,
 Activity_Operation => act1,
 Activity_Server => sact1),
 (Type => Activity,
 Input_Event => ao61,
 Output_Event => ao7,
 Activity_Operation => act2,
 Activity_Server => sact2),
 (Type => Concentrator,
 Output_Event => ar1,
 Input_Events_List=>
 (ao3,
 ao4)),
 (Type => Multicast,
 Input_Event => trigger,
 Output_Events_List=>
 (image1,
 image2)),
 (Type => Multicast,
 Input_Event => ao5,
 Output_Events_List=>
 (ar2,
 ar3)),
 (Type => Activity,
 Input_Event => ar2,
 Output_Event => ao62,
 Activity_Operation => m32,
 Activity_Server => sm3)));

Transaction (
 Type => regular,
 Name => trans2,
 External_Events =>
 ((Type => Periodic,
 Name => eus,
 Period => 1000.00,
 Max_Jitter => 0.000,
 Phase => 0.000)),
 Internal_Events =>
 ((Type => Regular,
 Name => ao9),
 (Type => Regular,
 Name => ao10),
 (Type => Regular,
 Name => ao11),
 (Type => Regular,
 Name => ao12),
 (Type => Regular,
 Name => ao13),
 (Type => Regular,
 Name => ao14,
 Timing_Requirements =>
 (Type => Hard_Global_Deadline,
 Deadline => 10000.00,
Description of the MAST Model- 10/2/25 - Page 74

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 Referenced_Event => eus)),
 (Type => Regular,
 Name => ao15,
 Timing_Requirements =>
 (Type => Hard_Global_Deadline,
 Deadline => 10000.00,
 Referenced_Event => eus)),
 (Type => Regular,
 Name => ar4),
 (Type => Regular,
 Name => ar5)),
 Event_Handlers =>
 ((Type => Activity,
 Input_Event => eus,
 Output_Event => ao9,
 Activity_Operation => acq3,
 Activity_Server => sacq3),
 (Type => Activity,
 Input_Event => ao9,
 Output_Event => ao10,
 Activity_Operation => m4,
 Activity_Server => sm4),
 (Type => Activity,
 Input_Event => ao10,
 Output_Event => ao11,
 Activity_Operation => pro2,
 Activity_Server => spro2),
 (Type => Activity,
 Input_Event => ar4,
 Output_Event => ao12,
 Activity_Operation => m5,
 Activity_Server => sm5),
 (Type => Activity,
 Input_Event => ar5,
 Output_Event => ao13,
 Activity_Operation => m6,
 Activity_Server => sm6),
 (Type => Activity,
 Input_Event => ao12,
 Output_Event => ao14,
 Activity_Operation => act3,
 Activity_Server => sact3),
 (Type => Activity,
 Input_Event => ao13,
 Output_Event => ao15,
 Activity_Operation => act4,
 Activity_Server => sact4),
 (Type => Multicast,
 Input_Event => ao11,
 Output_Events_List=>
 (ar4,
 ar5))));

APPENDIX A. XML MAST Format

In order to access the wide range of XML free tools that are available to validate, parse,
analyse, and process an text file description formatted under XML rules, an XML format has
been defined for the MAST model. It is formalized by means of a W3C-Schema.

The keywords of the special-purpose MAST description format have been used as tags in the
XML format and therefore both have the same appearance.
Description of the MAST Model- 10/2/25 - Page 75

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
A.1. Formulating a MAST model as an XML document

The rules for writing a MAST model as an XML document are the following:

• The tags used for delimiting the model elements are the keywords that are defined as
types in the special-purpose MAST description format. There are only a few exceptions,
mentioned in Table 3.

• The name attributes are mandatory.

• Blank spaces, tabs and new lines are ignored.

• Identifiers or names follow the Ada rules for identifiers: they begin with a letter,
followed by letters, digits, underscores (’_’) or periods (’.’).

• The identifiers are XML attributes and are always expressed with quotes. There are no
reserved words.

• The order of declaration of the modelling elements is not relevant. A model element may
be referenced (by its name) in the file before it is declared.

• Floating point types without fractional part can be expressed without the decimal point.

• Comments are like in XML: they begin with the four character pattern (“<!--”) and end
with the three character pattern (“-->”).

• The description is case-sensitive, although the identifiers are not.

Table 3. Relation between MAST model format and XML tags

special-purpose format type XML_Mast tag

Regular (Scheduling_Server) Regular_Scheduling_Server

Fixed_Priority Fixed_Priority_Scheduler

EDF (Scheduler) EDF_Scheduler

FP_Packet_Based FP_Packet_Based_Scheduler

Ticker (System_Timer) Ticker_System_Timer

Alarm_Clock (System_Timer) Alarm_Clock_System_Timer

Periodic (External_Event) Periodic_External_Event

Sporadic (External_Event) Sporadic_External_Event

Unbounded (External_Event) Unbounded_External_Event

Bursty (External_Event) Bursty_External_Event

Singular (External_Event) Singular_External_Event

Regular (Event) Regular_Event

Regular (Transaction) Regular_Transaction

Composite (Timing req.) Composite_Timing_Requirement
Description of the MAST Model- 10/2/25 - Page 76

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
A.2. W3C-Schema template for supporting MAST models in XML
format

The XML format for MAST models is defined in agreement with the terms and concepts that
have been defined in the previous Section 8. They are covered by means of the following
W3C-Schema.

A.2.1 W3C-Schema definition

See file Mast_Model.xsd

A.2.2 Example Using the XML-MAST Format

In this section we show an example of a MAST model formulated in XML format. It is an
instance of the “Single Processor System: Caseva” that had been described in Section 12.

<?xml version="1.0" encoding="UTF-8"?>
<mast_mdl:MAST_MODEL
 xmlns:mast_mdl="http://mast.unican.es/xmlmast/xmlmast_1_4/Mast_Model"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://mast.unican.es/xmlmast/xmlmast_1_4/Mast_Model http://
mast.unican.es/xmlmast/xmlmast_1_4/Mast_Model.xsd"
 Model_Name="caseva"
 Model_Date="2000-01-01T00:00:00">
 <mast_mdl:Regular_Processor Name="processor_1" Max_Interrupt_Priority="32767"
Min_Interrupt_Priority="1" Worst_ISR_Switch="0.00" Avg_ISR_Switch="0.00"
Best_ISR_Switch="0.00" Speed_Factor="1.00" >
 </mast_mdl:Regular_Processor>
 <mast_mdl:Primary_Scheduler Name="processor_1" Host="processor_1" >
 <mast_mdl:Fixed_Priority_Scheduler Worst_Context_Switch="102.50" Avg_Context_Switch="0.00"
Best_Context_Switch="0.00" Max_Priority="32767" Min_Priority="1" />
 </mast_mdl:Primary_Scheduler>

 <mast_mdl:Immediate_Ceiling_Resource Name="servo_data" Ceiling="32767" Preassigned="NO" />

 <mast_mdl:Immediate_Ceiling_Resource Name="arm" Ceiling="32767" Preassigned="NO" />

 <mast_mdl:Immediate_Ceiling_Resource Name="lights" Ceiling="32767" Preassigned="NO" />

 <mast_mdl:Immediate_Ceiling_Resource Name="alarms" Ceiling="32767" Preassigned="NO" />

 <mast_mdl:Immediate_Ceiling_Resource Name="position_command" Ceiling="32767"
Preassigned="NO" />

 <mast_mdl:Immediate_Ceiling_Resource Name="error_log" Ceiling="32767" Preassigned="NO" />

 <mast_mdl:Simple_Operation Name="read_new_point" Worst_Case_Execution_Time="87.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>servo_data</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>servo_data</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="write_position_errors" Worst_Case_Execution_Time="42.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>servo_data</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>servo_data</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="new_point" Worst_Case_Execution_Time="54.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
Description of the MAST Model- 10/2/25 - Page 77

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <mast_mdl:Shared_Resources_To_Lock>servo_data</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>servo_data</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_errors" Worst_Case_Execution_Time="47.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>servo_data</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>servo_data</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_axis_positions" Worst_Case_Execution_Time="135.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>arm</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>arm</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_motor_positions" Worst_Case_Execution_Time="101.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>arm</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>arm</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_servos_ok" Worst_Case_Execution_Time="66.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>arm</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>arm</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_relay" Worst_Case_Execution_Time="43.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>arm</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>arm</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="set_relay" Worst_Case_Execution_Time="62.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>arm</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>arm</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="control_servos" Worst_Case_Execution_Time="99.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>arm</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>arm</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="turn_on" Worst_Case_Execution_Time="74.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="turn_off" Worst_Case_Execution_Time="71.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="turn_on_timed" Worst_Case_Execution_Time="74.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="turn_on_flashing" Worst_Case_Execution_Time="125.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
Description of the MAST Model- 10/2/25 - Page 78

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="turn_on_timed_flashing" Worst_Case_Execution_Time="114.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="start_lights_test" Worst_Case_Execution_Time="212.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="end_lights_test" Worst_Case_Execution_Time="217.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="time_lights" Worst_Case_Execution_Time="119.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>lights</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>lights</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read" Worst_Case_Execution_Time="64.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_all_alarms" Worst_Case_Execution_Time="78.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="set" Worst_Case_Execution_Time="59.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="acknowledge" Worst_Case_Execution_Time="60.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="reset" Worst_Case_Execution_Time="60.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="insert_error" Worst_Case_Execution_Time="79.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="get_error" Worst_Case_Execution_Time="72.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
Description of the MAST Model- 10/2/25 - Page 79

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <mast_mdl:Shared_Resources_To_Lock>alarms</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>alarms</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="read_position_command" Worst_Case_Execution_Time="47.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>position_command</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>position_command</
mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="write_position_command" Worst_Case_Execution_Time="42.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>position_command</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>position_command</
mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="notify_error" Worst_Case_Execution_Time="85.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>error_log</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>error_log</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Simple_Operation Name="get_error_from_queue" Worst_Case_Execution_Time="79.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Shared_Resources_To_Lock>error_log</mast_mdl:Shared_Resources_To_Lock>
 <mast_mdl:Shared_Resources_To_Unlock>error_log</mast_mdl:Shared_Resources_To_Unlock>
 </mast_mdl:Simple_Operation>

 <mast_mdl:Enclosing_Operation Name="servo_control" Worst_Case_Execution_Time="1080.0"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Operation_List>read_new_point write_position_errors read_axis_positions
read_servos_ok set_relay control_servos read read_all_alarms set acknowledge reset
insert_error</mast_mdl:Operation_List>
 </mast_mdl:Enclosing_Operation>

 <mast_mdl:Enclosing_Operation Name="trajectory_planning" Worst_Case_Execution_Time="9045.0"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Operation_List>new_point turn_on turn_off turn_on_timed turn_on_flashing
turn_on_timed_flashing start_lights_test end_lights_test read read_all_alarms set acknowledge
reset insert_error get_error write_position_command notify_error</mast_mdl:Operation_List>
 </mast_mdl:Enclosing_Operation>

 <mast_mdl:Enclosing_Operation Name="light_manager" Worst_Case_Execution_Time="119.00"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Operation_List>time_lights insert_error</mast_mdl:Operation_List>
 </mast_mdl:Enclosing_Operation>

 <mast_mdl:Enclosing_Operation Name="reporter" Worst_Case_Execution_Time="72952.0"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Operation_List>read_errors read_axis_positions read_servos_ok read_relay read
read_all_alarms read_position_command</mast_mdl:Operation_List>
 </mast_mdl:Enclosing_Operation>

 <mast_mdl:Enclosing_Operation Name="message_logger" Worst_Case_Execution_Time="46820.0"
Average_Case_Execution_Time="1.000E+100" Best_Case_Execution_Time="0.00">
 <mast_mdl:Operation_List>get_error_from_queue</mast_mdl:Operation_List>
 </mast_mdl:Enclosing_Operation>

 <mast_mdl:Regular_Scheduling_Server Name="servo_control" Scheduler="processor_1" >
 <mast_mdl:Fixed_Priority_Policy The_Priority="415" Preassigned="NO"/>
 </mast_mdl:Regular_Scheduling_Server>
 <mast_mdl:Regular_Scheduling_Server Name="trajectory_planning" Scheduler="processor_1" >
 <mast_mdl:Fixed_Priority_Policy The_Priority="412" Preassigned="NO"/>
 </mast_mdl:Regular_Scheduling_Server>
Description of the MAST Model- 10/2/25 - Page 80

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <mast_mdl:Regular_Scheduling_Server Name="light_manager" Scheduler="processor_1" >
 <mast_mdl:Fixed_Priority_Policy The_Priority="410" Preassigned="NO"/>
 </mast_mdl:Regular_Scheduling_Server>
 <mast_mdl:Regular_Scheduling_Server Name="reporter" Scheduler="processor_1" >
 <mast_mdl:Fixed_Priority_Policy The_Priority="80" Preassigned="NO"/>
 </mast_mdl:Regular_Scheduling_Server>
 <mast_mdl:Regular_Scheduling_Server Name="message_logger" Scheduler="processor_1" >
 <mast_mdl:Fixed_Priority_Policy The_Priority="70" Preassigned="NO"/>
 </mast_mdl:Regular_Scheduling_Server>

 <mast_mdl:Regular_Transaction Name="servo_control" >
 <mast_mdl:Periodic_External_Event Name="e1" Period="5000.00" Max_Jitter="0.000"
Phase="0.000" />
 <mast_mdl:Regular_Event Event="o1" >
 <mast_mdl:Hard_Global_Deadline Deadline="5000.00" Referenced_Event="e1"/>
 </mast_mdl:Regular_Event>
 <mast_mdl:Activity Input_Event="e1" Output_Event="o1" Activity_Operation= "servo_control"
Activity_Server= "servo_control"/>
 </mast_mdl:Regular_Transaction>
 <mast_mdl:Regular_Transaction Name="trajectory_planning" >
 <mast_mdl:Periodic_External_Event Name="e2" Period="50000.00" Max_Jitter="0.000"
Phase="0.000" />
 <mast_mdl:Regular_Event Event="o2" >
 <mast_mdl:Hard_Global_Deadline Deadline="50000.00" Referenced_Event="e2"/>
 </mast_mdl:Regular_Event>
 <mast_mdl:Activity Input_Event="e2" Output_Event="o2" Activity_Operation=
"trajectory_planning" Activity_Server= "trajectory_planning"/>
 </mast_mdl:Regular_Transaction>
 <mast_mdl:Regular_Transaction Name="light_manager" >
 <mast_mdl:Periodic_External_Event Name="e3" Period="100000.00" Max_Jitter="0.000"
Phase="0.000" />
 <mast_mdl:Regular_Event Event="o3" >
 <mast_mdl:Hard_Global_Deadline Deadline="100000.00" Referenced_Event="e3"/>
 </mast_mdl:Regular_Event>
 <mast_mdl:Activity Input_Event="e3" Output_Event="o3" Activity_Operation= "light_manager"
Activity_Server= "light_manager"/>
 </mast_mdl:Regular_Transaction>
 <mast_mdl:Regular_Transaction Name="reporter" >
 <mast_mdl:Periodic_External_Event Name="e4" Period="1000000.00" Max_Jitter="0.000"
Phase="0.000" />
 <mast_mdl:Regular_Event Event="o4" >
 <mast_mdl:Hard_Global_Deadline Deadline="1000000.00" Referenced_Event="e4"/>
 </mast_mdl:Regular_Event>
 <mast_mdl:Activity Input_Event="e4" Output_Event="o4" Activity_Operation= "reporter"
Activity_Server= "reporter"/>
 </mast_mdl:Regular_Transaction>
 <mast_mdl:Regular_Transaction Name="message_logger" >
 <mast_mdl:Unbounded_External_Event Name="e5" Avg_Interarrival="1000000.00"
Distribution="UNIFORM" />
 <mast_mdl:Regular_Event Event="o5" ></mast_mdl:Regular_Event>
 <mast_mdl:Activity Input_Event="e5" Output_Event="o5" Activity_Operation=
"message_logger" Activity_Server= "message_logger"/>
 </mast_mdl:Regular_Transaction>

</mast_mdl:MAST_MODEL>

A.3. W3C-Schema template for the Mast Results formulated as an
XML document

The XML format of the MAST results file is defined in agreement with the terms and concepts
that have been defined in Section 10.
Description of the MAST Model- 10/2/25 - Page 81

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
A.3.1 W3C-Schema definition

See file Mast_Results.xsd

A.3.2 Example of a results document formulated in XML

This section shows an example of a results file with the XML format for the “Single Processor
System: Caseva” that had been described in Section 12.

<?xml version="1.0" encoding="UTF-8"?>
<mast_res:REAL_TIME_SITUATION
 xmlns:mast_res="http://mast.unican.es/xmlmast/xmlmast_1_4/Mast_Result"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://mast.unican.es/xmlmast/xmlmast_1_4/Mast_Result http://
mast.unican.es/xmlmast/xmlmast_1_4/Mast_Result.xsd"
 Model_Name="caseva"
 Model_Date="2000-01-01T00:00:00"
 Generation_Tool="MAST Schedulability Analysis, version 1.5.0.0"
 Generation_Profile="mast_analysis classic_rm -v -c -s /home/mgh/prog/mast/examples/
caseva_example.txt /home/mgh/prog/mast/examples/caseva_example.out"
 Generation_Date="2014-07-28T13:25:53">
 <mast_res:Slack Value="101.56"/>
 <mast_res:Transaction Name="servo_control" >
 <mast_res:Slack Value="221.48"/>
 <mast_res:Timing_Result Event_Name="o1" Num_Of_Suspensions="0"
Worst_Blocking_Time="135.000" >
 <mast_res:Worst_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e1" Time_Value="1420.00"/>
 </mast_res:Worst_Global_Response_Times>
 <mast_res:Best_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e1" Time_Value="0.000"/>
 </mast_res:Best_Global_Response_Times>
 <mast_res:Jitters>
 <mast_res:Global_Response_Time Referenced_Event="e1" Time_Value="1420.00"/>
 </mast_res:Jitters>
 </mast_res:Timing_Result>
 </mast_res:Transaction>

 <mast_res:Transaction Name="trajectory_planning" >
 <mast_res:Slack Value="264.84"/>
 <mast_res:Timing_Result Event_Name="o2" Num_Of_Suspensions="0"
Worst_Blocking_Time="135.000" >
 <mast_res:Worst_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e2" Time_Value="13240.00"/>
 </mast_res:Worst_Global_Response_Times>
 <mast_res:Best_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e2" Time_Value="0.000"/>
 </mast_res:Best_Global_Response_Times>
 <mast_res:Jitters>
 <mast_res:Global_Response_Time Referenced_Event="e2" Time_Value="13240.00"/>
 </mast_res:Jitters>
 </mast_res:Timing_Result>
 </mast_res:Transaction>

 <mast_res:Transaction Name="light_manager" >
 <mast_res:Slack Value="4602.3"/>
 <mast_res:Timing_Result Event_Name="o3" Num_Of_Suspensions="0"
Worst_Blocking_Time="135.000" >
 <mast_res:Worst_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e3" Time_Value="13564.00"/>
 </mast_res:Worst_Global_Response_Times>
 <mast_res:Best_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e3" Time_Value="0.000"/>
 </mast_res:Best_Global_Response_Times>
Description of the MAST Model- 10/2/25 - Page 82

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <mast_res:Jitters>
 <mast_res:Global_Response_Time Referenced_Event="e3" Time_Value="13564.00"/>
 </mast_res:Jitters>
 </mast_res:Timing_Result>
 </mast_res:Transaction>

 <mast_res:Transaction Name="reporter" >
 <mast_res:Slack Value="656.64"/>
 <mast_res:Timing_Result Event_Name="o4" Num_Of_Suspensions="0"
Worst_Blocking_Time="79.000" >
 <mast_res:Worst_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e4" Time_Value="137614.00"/>
 </mast_res:Worst_Global_Response_Times>
 <mast_res:Best_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e4" Time_Value="0.000"/>
 </mast_res:Best_Global_Response_Times>
 <mast_res:Jitters>
 <mast_res:Global_Response_Time Referenced_Event="e4" Time_Value="137614.00"/>
 </mast_res:Jitters>
 </mast_res:Timing_Result>
 </mast_res:Transaction>

 <mast_res:Transaction Name="message_logger" >
 <mast_res:Slack Value="35216.4"/>
 <mast_res:Timing_Result Event_Name="o5" Num_Of_Suspensions="0"
Worst_Blocking_Time="0.000" >
 <mast_res:Worst_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e5" Time_Value="1.000E+100"/>
 </mast_res:Worst_Global_Response_Times>
 <mast_res:Best_Global_Response_Times>
 <mast_res:Global_Response_Time Referenced_Event="e5" Time_Value="0.000"/>
 </mast_res:Best_Global_Response_Times>
 <mast_res:Jitters>
 <mast_res:Global_Response_Time Referenced_Event="e5" Time_Value="1.000E+100"/>
 </mast_res:Jitters>
 </mast_res:Timing_Result>
 </mast_res:Transaction>

 <mast_res:Processing_Resource Name="processor_1">
 <mast_res:Slack Value="93.03"/>
 <mast_res:Utilization Total="51.84"/>
 </mast_res:Processing_Resource>
 <mast_res:Shared_Resource Name="servo_data" >
 </mast_res:Shared_Resource>
 <mast_res:Shared_Resource Name="arm" >
 </mast_res:Shared_Resource>
 <mast_res:Shared_Resource Name="lights" >
 </mast_res:Shared_Resource>
 <mast_res:Shared_Resource Name="alarms" >
 </mast_res:Shared_Resource>
 <mast_res:Shared_Resource Name="position_command" >
 </mast_res:Shared_Resource>
 <mast_res:Shared_Resource Name="error_log" >
 </mast_res:Shared_Resource>
 </mast_res:REAL_TIME_SITUATION>

A.4. W3C-Schema template for the MAST traces formulated in
XML format

The XML format of the MAST trace register file is defined in agreement with the terms and
concepts that have been defined in Section 11.
Description of the MAST Model- 10/2/25 - Page 83

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
A.4.1 W3C-Schema definition.

See file Mast_Trace.xsd

A.4.2 Example of the XML-MAST Trace Format

This section shows an example of a trace file using the MAST trace XML format for the
“Single Processor System: Caseva” example that had been described in Section 12.

<?xml version="1.0" encoding="UTF-8"?>

<mast_trace:TRACE_FILE
 xmlns:mast_trace="http://mast.unican.es/xmlmast/xmlmast_1_4/Mast_Trace"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://mast.unican.es/xmlmast/xmlmast_1_4/Mast_Trace http://
mast.unican.es/xmlmast/xmlmast_1_4/Mast_Trace.xsd"
 Model_Name ="Caseva_With_Clock"
 Model_Date ="2000-01-01T12:00:00"
 Generation_Tool ="Sim_MAST"
 Generation_Profile ="sim mast simulator 1.00000E+09 VERIFICATION 512 1024
C:\Temp\caseva_with_clock.xml C:\Temp\caseva_with_clock"
 Generation_Date ="2003-07-24T11:41:21"
 Start_Time = "0.0"
 End_Time = " 1.00000000000000E+09">

 <mast_trace:Msg_Type_List>
 <mast_trace:Msg_Type Mid=" 0" Type="PROC_FREE_ST"/>
 <mast_trace:Msg_Type Mid=" 1" Type="PROC_SWITCHING_ST"/>
 <mast_trace:Msg_Type Mid=" 2" Type="PROC_SCHEDULING"/>
 <mast_trace:Msg_Type Mid=" 3" Type="PROC_ATTENDING_APPLICATION_ST"/>
 <mast_trace:Msg_Type Mid=" 4" Type="PROC_ATTENDING_TIMER_ST"/>
 <mast_trace:Msg_Type Mid=" 5" Type="PROC_ATTENDING_DRIVER_ST"/>
 <mast_trace:Msg_Type Mid=" 6" Type="NETWORK_FREE_ST"/>
 <mast_trace:Msg_Type Mid=" 7" Type="NETWORK_SYNCHRONIZING_ST"/>
 <mast_trace:Msg_Type Mid=" 8" Type="NETWORK_TRANSMITTING_ST"/>
 <mast_trace:Msg_Type Mid=" 9" Type="SHARED_RSRC_FREE_ST"/>
 <mast_trace:Msg_Type Mid=" 10" Type="SHARED_RSRC_USED_ST"/>
 <mast_trace:Msg_Type Mid=" 11" Type="TIMER_IDLE_ST"/>
 <mast_trace:Msg_Type Mid=" 12" Type="TIMER_AWAITING_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 13" Type="TIMER_MANAGING_ST"/>
 <mast_trace:Msg_Type Mid=" 14" Type="ACTIVITY_IDLE_ST"/>
 <mast_trace:Msg_Type Mid=" 15" Type="ACTIVITY_SCHEDULED_ST"/>
 <mast_trace:Msg_Type Mid=" 16" Type="ACTIVITY_SUSPENDED_ST"/>
 <mast_trace:Msg_Type Mid=" 17" Type="ACTIVITY_AWAITING_TIMER_ST"/>
 <mast_trace:Msg_Type Mid=" 18" Type="ACTIVITY_AWAITING_ACTIVATION_ST"/>
 <mast_trace:Msg_Type Mid=" 19" Type="DISPATCHER_IDLE_ST"/>
 <mast_trace:Msg_Type Mid=" 20" Type="DISPATCHER_AWAITING_ACTIVATION_ST"/>
 <mast_trace:Msg_Type Mid=" 21" Type="DISPATCHER_SUSPENDED_ST"/>
 <mast_trace:Msg_Type Mid=" 22" Type="DISPATCHER_READY_TO_TRANSFER_ST"/>
 <mast_trace:Msg_Type Mid=" 23" Type="DISPATCHER_PACKET_TRANSFERING_ST"/>
 <mast_trace:Msg_Type Mid=" 24" Type="DISPATCHER_AWAITING_SENDER_ST"/>
 <mast_trace:Msg_Type Mid=" 25" Type="DISPATCHER_AWAITING_RECEIVER_ST"/>
 <mast_trace:Msg_Type Mid=" 26" Type="SCHED_SRVR_IDLE_ST"/>
 <mast_trace:Msg_Type Mid=" 27" Type="SCHED_SRVR_AWAITING_PROC_FOR_RSRC_ACCESS_ST"/>
 <mast_trace:Msg_Type Mid=" 28" Type="SCHED_SRVR_AWAITING_RSRC_WITH_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 29" Type="SCHED_SRVR_AWAITING_RSRC_ST"/>
 <mast_trace:Msg_Type Mid=" 30" Type="SCHED_SRVR_AWAITING_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 31" Type="SCHED_SRVR_SCHEDULED_ST"/>
 <mast_trace:Msg_Type Mid=" 32" Type="SCHED_SRVR_SCHEDULING_WITHOUT_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 33" Type="SCHED_SRVR_SCHEDULING_WITH_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 34" Type="SCHED_SRVR_AWAITING_POLLING_ST"/>
 <mast_trace:Msg_Type Mid=" 35" Type="SCHED_SRVR_INITIAL_AWAITING_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 36" Type="SCHED_SRVR_ATTENDING_POLLING_TIMER_ST"/>
Description of the MAST Model- 10/2/25 - Page 84

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <mast_trace:Msg_Type Mid=" 37" Type="SCHED_SRVR_SCHEDULING_AFTER_POLLING_ST"/>
 <mast_trace:Msg_Type Mid=" 38" Type="SCHED_SRVR_CHECKING_SEGMENT_END_WITH_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 39" Type="SCHED_SRVR_CHECKING_SEGMENT_END_WITHOUT_PROC_ST"/>
 <mast_trace:Msg_Type Mid=" 40" Type="SPORADIC_SRVR_MANAGER_NORMALSCHEDULED_ST"/>
 <mast_trace:Msg_Type Mid=" 41" Type="SPORADIC_SRVR_MANAGER_NORMALNONSCHEDULED_ST"/>
 <mast_trace:Msg_Type Mid=" 42" Type="SPORADIC_SRVR_MANAGER_BACKGROUNDSCHEDULED_ST"/>
 <mast_trace:Msg_Type Mid=" 43" Type="SPORADIC_SRVR_MANAGER_BACKGROUNDNONSCHEDULED_ST"/>
 <mast_trace:Msg_Type Mid=" 44" Type="DELAY_IDLE_ST"/>
 <mast_trace:Msg_Type Mid=" 45" Type="DELAY_DELAYING_ST"/>
 <mast_trace:Msg_Type Mid=" 46" Type="DELAY_AWAITING_REF_EV_ST"/>
 <mast_trace:Msg_Type Mid=" 47" Type="FLOW_EVENT"/>
 <mast_trace:Msg_Type Mid=" 48" Type="SCHED_REQ_EVENT"/>
 <mast_trace:Msg_Type Mid=" 49" Type="SCHED_ACCEPT_EVENT"/>
 <mast_trace:Msg_Type Mid=" 50" Type="SCHED_ASSIGN_EVENT"/>
 <mast_trace:Msg_Type Mid=" 51" Type="SCHED_UNASSIGN_EVENT"/>
 <mast_trace:Msg_Type Mid=" 52" Type="RSRC_REQ_EVENT"/>
 <mast_trace:Msg_Type Mid=" 53" Type="PROC_REQ_EVENT"/>
 <mast_trace:Msg_Type Mid=" 54" Type="RSRC_ASSIGN_EVENT"/>
 <mast_trace:Msg_Type Mid=" 55" Type="PROC_ASSIGN_EVENT"/>
 <mast_trace:Msg_Type Mid=" 56" Type="PROC_UNASSIGN_EVENT"/>
 <mast_trace:Msg_Type Mid=" 57" Type="RELEASE_EVENT"/>
 <mast_trace:Msg_Type Mid=" 58" Type="AWAITING_EVENT"/>
 <mast_trace:Msg_Type Mid=" 59" Type="PRTY_ASSIGN_EV"/>
 <mast_trace:Msg_Type Mid=" 60" Type="TIMER_EVENT"/>
 <mast_trace:Msg_Type Mid=" 61" Type="STATE_OFF"/>
 <mast_trace:Msg_Type Mid=" 62" Type="GLOBAL_DEADLINE_MISSED"/>
 <mast_trace:Msg_Type Mid=" 63" Type="LOCAL_DEADLINE_MISSED"/>
 <mast_trace:Msg_Type Mid=" 64" Type="OVERRIDDEN_PACKET"/>
 <mast_trace:Msg_Type Mid=" 65" Type="OVERRIDDEN_MESSAGE"/>
 </mast_trace:Msg_Type_List>

 <mast_trace:Src_List>
 <mast_trace:Src Sid="-13" Name="Servo_Control.E1" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-99" Name="Message_Logger.E5" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-83" Name="Reporter.E4" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-72" Name="Light_Manager.E3" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-40" Name="Trajectory_Planning.E2"

Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-15" Name="Servo_Control 0" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-22" Name="Servo_Control 1" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-27" Name="Servo_Control 2" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-30" Name="Servo_Control 3" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-35" Name="Servo_Control 4" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-14" Name="Servo_Control.O1" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-42" Name="Trajectory_Planning 0" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-49" Name="Trajectory_Planning 1" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-54" Name="Trajectory_Planning 2" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-57" Name="Trajectory_Planning 3" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-62" Name="Trajectory_Planning 4" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-65" Name="Trajectory_Planning 5" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-41" Name="Trajectory_Planning.O2"

Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-74" Name="Light_Manager 0" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-73" Name="Light_Manager.O3" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-85" Name="Reporter 0" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-92" Name="Reporter 1" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-84" Name="Reporter.O4" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/>
 <mast_trace:Src Sid="-101" Name="Message_Logger 0" Type="SIM.EV_C.INSTANCE"/>
 <mast_trace:Src Sid="-100" Name="Message_Logger.O5" Type="SIM.EV_C.MAIN_FLOW_CH.INSTANCE"/
>
 </mast_trace:Src_List>

 <mast_trace:Msg_List>
 <t:E T=" 9.99675335666572E+08" S="-30" M=" 47"/>
Description of the MAST Model- 10/2/25 - Page 85

Grupo de Ingeniería de Software y Tiempo Real
Universidad de Cantabria
 <t:E T=" 9.99675391380435E+08" S="-35" M=" 47"/>
 <t:E T=" 9.99675858696526E+08" S="-14" M=" 47"/>
 <t:E T=" 9.99680000000000E+08" S="-13" M=" 47"/>
 <t:E T=" 9.99680097958756E+08" S="-15" M=" 47"/>
 <t:E T=" 9.99680134392436E+08" S="-22" M=" 47"/>
 <t:E T=" 9.99680222603902E+08" S="-27" M=" 47"/>
 <t:E T=" 9.99680234018401E+08" S="-30" M=" 47"/>
............
............
 <t:E T=" 1.00000000000000E+09" S="-83" M=" 47"/>
 <t:E T=" 1.00000000000000E+09" S="-13" M=" 47"/>
 <t:E T=" 1.00000000000000E+09" S="-72" M=" 47"/>
 <t:E T=" 1.00000000000000E+09" S="-40" M=" 47"/>
 </mast_trace:Msg_List>
</mast_trace:TRACE_FILE>
Description of the MAST Model- 10/2/25 - Page 86

	1. Introduction
	2. Requirements
	3. MAST Tools
	4. Real-Time System Model
	5. MAST Output Files
	6. Type definitions
	7. Writing the MAST File with the special-purpose format
	8. Elements of the MAST model
	8.1 Processing Resources
	8.2 System Timers
	8.3 Network Drivers
	8.4 Schedulers
	8.5 Scheduling policies
	8.6 Scheduling parameters
	8.7 Synchronization Parameters
	8.8 Scheduling Servers
	8.9 Shared Resources
	8.10 Operations
	8.11 Events
	8.12 Timing Requirements
	8.13 Event Handlers
	8.14 Transactions
	8.15 Overall Model

	9. Templates for the MAST File
	10. Results File Format
	10.1 Real-Time Situation
	10.2 Transaction
	10.3 Processing_Resource
	10.4 Operation
	10.5 Scheduling Server
	10.6 Shared Resource

	11. Traces File Format
	12. Example of a Single-Processor System: CASEVA
	13. Example of Linear_Transactions: RMT
	14. Example of Multipath_Transactions
	Input File for the Multipath Example
	APPENDIX A. XML MAST Format
	A.1. Formulating a MAST model as an XML document
	A.2. W3C-Schema template for supporting MAST models in XML format
	A.2.1 W3C-Schema definition
	A.2.2 Example Using the XML-MAST Format

	A.3. W3C-Schema template for the Mast Results formulated as an XML document
	A.3.1 W3C-Schema definition
	A.3.2 Example of a results document formulated in XML

	A.4. W3C-Schema template for the MAST traces formulated in XML format
	A.4.1 W3C-Schema definition.
	A.4.2 Example of the XML-MAST Trace Format

