

JSimMAST working example

Working example for
JSimMAST

The SimpleScada application

César Cuevas Cuesta cuevasce@unican.es

José M. Drake Moyano drakej@unican.es

Patricia López Martínez lopezpa@unican.es

CTR -Computers and Real-Time Group

Electronics and Computers Department

University of Cantabria (Spain)

mailto:cuevasce@unican.es�
mailto:drakej@unican.es�
mailto:lopezpa@unican.es�

JSimMAST working example

2

Working example for JSimMAST
The SimpleScada application

Contents
1 Introduction ... 3
2 SimpleScada elements ... 4

2.1 Nodes .. 4
2.2 Real-time design threads .. 4
2.3 Other schedulable resources ... 4
2.4 Passive resources .. 4

3 SimpleScada at work ... 5
4 SimpleScada MAST2.0 model .. 6

JSimMAST working example

3

1 Introduction
In order to illustrate the usage of JSimMAST, a simple real-time system is considered and its MAST
2.0 model is provided. The system consists of a SCADA (Supervisory Control And Data Acquisition)
application deployed on 4 processors and meant for the supervision of a set of 6 magnitudes. It is
named SimpleScada and it is a real-time system because the requirement that the signals must be
sampled with delays not greater than the 10% of the sampling period has been set. An overview is
depicted in Figure 1, where those four nodes as well as other application resources are shown.

Ethernet 1G Ethernet 100M

CANBus 100K
LocalProc

DBProc DB

DBAgentTh DisplayTh LoggingTh

SamplingTh0

OtherTh0

OtherTh1

AcqThX AcqThY

AcqProcY AcqProcX

Switch

LogMtx DisplMtx

LogCCh100M LogCCh1G

SamplingCCh

Figure 1. Overview of the SimpleScada application.

The description of the application elements is provided in the following section.

JSimMAST working example

4

2 SimpleScada elements

2.1 Nodes
• LocalProc: processor where the main application elements reside, i.e. those ones that have real-

time requirements. The node already has a workload represented by other applications
previously deployed on it, providing the OtherTh0 and OtherTh1 threads.

• AcqProc{X, Y}: hardware devices that contain the A/D converters for reading the signals. They
are accessed through a CAN Bus network of 100 KHz (CANBus100K) that connects them to
LocalProc.

• DBProc: remote computer in which the database for the persistent record of the supervision
results is placed. It is accessed from LocalProc through two Ethernet networks of 100MHz and
1 GHz (Ethernet100M and Ethernet1G) that are in turn interconnected through a switch
(Switch).

2.2 Real-time design threads
Every magnitude is sampled at a certain frequency determined by configuration and every 16 signal
samples, the average value is stored in the database and displayed on the screen. The application real-
time design is accomplished using the following set of threads:

• SamplingTh{0, 1, 2, 3, 4, 5}: sampling threads (one per supervised signal) whose priority is set
in order to satisfy the real-time requirements.

• LoggingTh: recording thread that manages the persistent storage in the database, with only the
throughput as requirement.

• DisplayTh: thread for displaying the results on the screen. It has lax real-time requirements,
since at least the 95% of the records must be displayed in half the sampling time.

2.3 Other schedulable resources
• AcqTh{X, Y}: threads for reading the signals values.
• DBAgentTh: thread for the record in the database.
• SamplingCCh: communication channel associated to the CANBus100K network that allows

sending messages between LocalProc and AcqProc{X, Y}.
• LogCCh100M and LogCCh1G: communication channels respectively associated to the

Ethernet100M and Ethernet1G networks that allow sending messages between LocalProc and
DBProc.

2.4 Passive resources
The asynchronous communication between the sampling threads and the ones for recording and
displaying is performed through queues protected by the LogMtx y DisplMtx mutexes.

• LogMtx: Allows secure synchronization between the SamplingThx and the LoggingTh for
interchange data.

• DisplMtx: Allows secure synchronization between the SamplingThx and the DisplayTh for
interchange data.

JSimMAST working example

5

3 SimpleScada at work
The functionality for reading and process data resides in the LocalProc and AcqProc{X, Y} nodes. The
sampling is initiated by the SamplingTh{0, 1, 2, 3, 4, 5} threads, which require to the AcqTh{X, Y}
threads the task of performing de data acquisition. After that, the SamplingTh{0, 1, 2, 3, 4, 5} threads
also execute the statistical process of the sampled data, calculating for each 16 values the average one.

On the other hand, the functionality regarding information recording resides in both the LocalProc and
DBProc nodes, being responsibility of the LoggingTh y DBAgentTh threads. Last, the visualization on
the screen is delegated to the DisplayTh thread, located in the LocalProc node.

In order to illustrate the system activity, the sequence diagram shown in Figure 2 represents the
sampling of one of the signals, e.g. the #0 signal. It is initiated by the occurrence of the timed event
SamplTrg0, which triggers the process of sampling the #0 signal by invoking the acquisition request
operation AcqReq on the SamplingTh0 thread. This request is transmitted through the SamplingCCh
communication channel by invoking on it the SendAcqReq operation that in turn implies invoking on
the AcqThX thread the ReadValue operation for signal reading. The read value is returned through
another message transmission along the same communication channel –invoking on it the ReturnValue
operation– towards the LocalProc processor, where, again on the SamplingTh0 thread, the
ProcessValue operation is invoked. This operation is responsible of the statistical process of the
sampled values, calculating the average value of each 16 values. For each calculated average value, the
GenerateLogMssg operation is again invoked on the SamplingTh0 thread to lay the generated value in
a queue with mutually exclusive access.

Timer SamplingTh0 SamplingCCh AcqThX LoggingTh DisplayTh

1 of 16

SamplTrg0 Sampling AcqRec

SendAcqRec ReadValue
ReturnValue

ProcessValue

GenerateLogMsg

{LogMtx.Lock}

Display

GenerateDisplMsg

SamplingDl0

{DisplayMtx.Lock}

Log

{DisplayMtx.Lock}

{LogMtx.Lock}

GetDisplayMsg

Figure 2. Sequence diagram for the SimpleScada application.

Every time a new average value is generated, the Log operation is asynchronously invoked on the
LoggingTh thread for passing the data to be stored. Also in a mutually exclusive way, this operation

JSimMAST working example

6

accesses to the previous queue for retrieving the corresponding value, which later will be recorded in
the database. Since the invocation on the LoggingTh thread is asynchronous, the control flow continues
on the SamplingTh0 by invoking on it the GenerateDisplMssg operation for the generation of the
information to be displayed on the screen as well as its deposit on another queue similar to the prior
one. The purpose is to invoke, asynchronously again, the GetDisplayData operation on the DisplayTh
thread. Similarly to the Log operation, this operation for obtaining displayable data accesses to that
second queue for retrieving the data that will be displayed on the screen by invoking on the same
thread – DisplayTh – the Display operation.

Regarding the case of the flow control directed to the persistent record in the database, after invoking
on the LoggingTh thread the Log operation, a message is transmitted through the Ethernet100M
network by invoking on the LogCCh100M communication channel the TxLoggingMssg operation.
However, since the connection between the LocalProc and DBProc nodes is not implemented directly
through the Ethernet100M network but exists a switch that links this network with another one –
Ethernet1G – connected to DBProc, it is necessary that this switch distributes the message by invoking
again the TxLoggingMssg operation, this time on the LogCCh1G communication channel associated to
the Ethernet1G network. Last, the StoreLoggingMssg operation is invoked on the DBAgentTh thread
responsible for the storage in the database. Figure 3 depicts how the sequence diagram of Figure 2
continues regarding the logging control flow.

SamplingTh0 LoggingTh LogCCh100M Switch LogCCh1G DBAgentTh

Log
TxLoggingMssg

TxLoggingMssg StoreLoggingMssg

MessageDelivery

Figure 3. Sequence diagram for logging control flow

Every operation is modelled by a probabilistic variable featured by the execution times in the worst,
average and best cases, with respect to a normalized processor. In addition, every operation specifies
the mutexes (LogMtx and DisplMtx) that are required for its execution. For instance, the
GenerateLogMssg operation requires locking the LogMtx mutex.

4 SimpleScada MAST2.0 model
The MAST model corresponding to this system is provided in XML serialized format in the
SimpleScada.mdl.xml file. The main model data are shown in the following activity diagram.

JSimMAST working example

7

e0

 SamplTrg5

T = 1 s

 SamplTrg4

T = 300 ms

 SamplTrg3

T = 250 ms

 AcqReq SendAcqReq

 ReadValue

 ReturnValue ProcessValue

GenLogMssg

GenDisplMssg

GetDisplData

 Log TxLoggingMssg MessageDeliver TxLoggingMssg StoreLoggingMssg

 Display

 SamplTrg0

S0.e1 S0.e2 S0.e5

S0.e10

S0.end

S0.e7

S0.e8

S0.e9

S0.e3 S0.e4

S0.e11

e10

S0.e6

e1, e2, e3, e4, e5

e6 e7 e8 e9 e19 e20

e16 e17 e18

e11, e12, e13, e14, e15

[1]

[15]

LoggingTh
wcet = 2.5 ms
acet = 2.5 ms
bcet = 2.5 ms
LogMtx

LogCCh100M
max = 512 bit
avg = 512 bit
min = 512 bit

LogCCh1G
max = 512 bit
avg = 512 bit
min = 512 bit

DBAgentTh
wcet = 2.7 ms
acet = 2.0 ms
bcet = 1.8 ms

DisplayTh
wcet = 25 us
acet = 22 us
bcet = 20 us
DisplMtx

DisplayTh
wcet = 15 ms
acet = 15 ms
bcet = 15 ms

SamplingTh0
wcet = 27 us
acet = 27 us
bcet = 27 us
DisplMtx

SamplingTh0
wcet = 1.3 ms
acet = 1.1 ms
bcet = 1.0 ms
LogMutex

SamplingTh0
wcet = 25 us
acet = 22 us
bcet = 21 us

AcqThX
wcet = 25 us
acet = 25 us
bcet = 25 us

SamplingCCh
max = 32 bit
avg = 32 bit
min = 32 bit

SamplingTh0
wcet = 10 us
acet = 10 us
bcet = 10 us

T = 50 ms
f = 0.0 ms
max jitter = 0

SamplingCCh
max = 48 bits
avg = 48 bits
min = 48 bits

 SamplTrg2

T = 75 ms

HardGlobalDeadline
ref: SamplTrg0
deadline = 5ms

MaxQueueSizeReq
maxNumEvents = 3

 SamplTrg1

T = 75 ms

JSimMAST working example

8

	CTR -Computers and Real-Time Group
	Electronics and Computers Department
	University of Cantabria (Spain)
	1 Introduction
	2 SimpleScada elements
	2.1 Nodes
	2.2 Real-time design threads
	2.3 Other schedulable resources
	2.4 Passive resources

	3 SimpleScada at work
	4 SimpleScada MAST2.0 model

