* @ JSimMAST working example

MAST >

Working example for
JSIMMAST

The SimpleScada application

César Cuevas Cuesta cuevasce@unican.es
José M. Drake Moyano drakej@unican.es

Patricia Lopez Martinez lopezpa@unican.es

CTR -Computers and Real-Time Group
Electronics and Computers Department

University of Cantabria (Spain)

mailto:cuevasce@unican.es�
mailto:drakej@unican.es�
mailto:lopezpa@unican.es�

Working example for JSImMAST

The SimpleScada application

Contents

R 1911 (0o [0 Tox £ (o) 4 OSSO OP PR PRRRPR

2 SIMPIESCAUA CIBIMENTS. ... ettt b e b et sneesbe e e eneenns
200 R N[0 [T OTRRUPP
2.2 Real-time design thrEaUSccveie it e e ns
2.3 Other SChedUIBDIE FESOUICEScccveeiiieiie ettt re e s re e sre e s e e ebe e saneenaeesnees
2.4 PaSSIVE TESOUICESvveiuveeitreiteeiteeareesteesiteesseeasseesseessteeasseasseessessssaessseasseeabeessseebaesseeeteesseeeseessees

I 4] o] [Tor= o F= = R0 o SR

4 SimpleScada MAST2.0 MOUEL.......c.o e

JSimMAST working example

1 Introduction

In order to illustrate the usage of JSIMMAST, a simple real-time system is considered and its MAST
2.0 model is provided. The system consists of a SCADA (Supervisory Control And Data Acquisition)
application deployed on 4 processors and meant for the supervision of a set of 6 magnitudes. It is
named SimpleScada and it is a real-time system because the requirement that the signals must be
sampled with delays not greater than the 10% of the sampling period has been set. An overview is
depicted in Figure 1, where those four nodes as well as other application resources are shown.

AN /t\ :

|
L
i ; Wy) v
' (> LoggingTh| [DisplayTh|- DBAgentTh
OtherThl ® ® [
I'A'I— = “ —
[= =]
V)| LogMud Al T4 ! DisSDIMIX DBProc
OtherThO L
SamplingThO
LocalProc

FAY

I:. Vv CANBus 100K
SamplingCCh ~ ~
[}

N/ !

N I \wl

AcgProcX AcgProcY

Figure 1. Overview of the SimpleScada application.

The description of the application elements is provided in the following section.

JSimMAST working example

'

2 SimpleScada elements

2.1 Nodes

e LocalProc: processor where the main application elements reside, i.e. those ones that have real-
time requirements. The node already has a workload represented by other applications
previously deployed on it, providing the OtherThO and OtherTh1 threads.

e AcgProc{X, Y}: hardware devices that contain the A/D converters for reading the signals. They
are accessed through a CAN Bus network of 100 KHz (CANBus100K) that connects them to
LocalProc.

e DBProc: remote computer in which the database for the persistent record of the supervision
results is placed. It is accessed from LocalProc through two Ethernet networks of 100MHz and
1 GHz (Ethernetl00M and EthernetlG) that are in turn interconnected through a switch
(Switch).

2.2 Real-time design threads

Every magnitude is sampled at a certain frequency determined by configuration and every 16 signal
samples, the average value is stored in the database and displayed on the screen. The application real-
time design is accomplished using the following set of threads:

o SamplingTh{0, 1, 2, 3, 4, 5}: sampling threads (one per supervised signal) whose priority is set
in order to satisfy the real-time requirements.

e LoggingTh: recording thread that manages the persistent storage in the database, with only the
throughput as requirement.

e DisplayTh: thread for displaying the results on the screen. It has lax real-time requirements,
since at least the 95% of the records must be displayed in half the sampling time.

2.3 Other schedulable resources

e AcqTh{X, Y}: threads for reading the signals values.

e DBAgentTh: thread for the record in the database.

e SamplingCCh: communication channel associated to the CANBus100K network that allows
sending messages between LocalProc and AcqProc{X, Y}.

e LogCChl100M and LogCCh1G: communication channels respectively associated to the
Ethernetl00M and EthernetlG networks that allow sending messages between LocalProc and
DBProc.

2.4 Passive resources
The asynchronous communication between the sampling threads and the ones for recording and

displaying is performed through queues protected by the LogMtx y DispIMtx mutexes.

e LogMtx: Allows secure synchronization between the SamplingThx and the LoggingTh for
interchange data.

e DispIMtx: Allows secure synchronization between the SamplingThx and the DisplayTh for
interchange data.

JSimMAST working example

3 SimpleScada at work

The functionality for reading and process data resides in the LocalProc and AcqProc{X, Y} nodes. The
sampling is initiated by the SamplingTh{0, 1, 2, 3, 4, 5} threads, which require to the AcqTh{X, Y}
threads the task of performing de data acquisition. After that, the SamplingTh{0, 1, 2, 3, 4, 5} threads
also execute the statistical process of the sampled data, calculating for each 16 values the average one.

On the other hand, the functionality regarding information recording resides in both the LocalProc and
DBProc nodes, being responsibility of the LoggingTh y DBAgentTh threads. Last, the visualization on
the screen is delegated to the DisplayTh thread, located in the LocalProc node.

In order to illustrate the system activity, the sequence diagram shown in Figure 2 represents the
sampling of one of the signals, e.g. the #0 signal. It is initiated by the occurrence of the timed event
SamplTrg0, which triggers the process of sampling the #0 signal by invoking the acquisition request
operation AcqReq on the SamplingThO thread. This request is transmitted through the SamplingCCh
communication channel by invoking on it the SendAcqReq operation that in turn implies invoking on
the AcqThX thread the ReadValue operation for signal reading. The read value is returned through
another message transmission along the same communication channel —invoking on it the ReturnValue
operation— towards the LocalProc processor, where, again on the SamplingThO thread, the
ProcessValue operation is invoked. This operation is responsible of the statistical process of the
sampled values, calculating the average value of each 16 values. For each calculated average value, the
GenerateLogMssg operation is again invoked on the SamplingThO thread to lay the generated value in
a queue with mutually exclusive access.

Timer SamplingThO[| SamplingCCh | | AcqThX || DisplayTh LoggingTh
SamplTrg0 Sampling . J_ACQREC
SendAchegl] ReadValue
RgturnVaIue J
ProcessValue[||
"10f16 .| |[GenerateLogMsg | | T
e ’ '
i {LogMtx.Lock} Log :
i GenerateDisplMsg {Log MtX-LOCk}I_l >
i A — B i
i {DisplayMtx.Lock} GetDisplayMsg :
! {DisplayMtx.Lock} !
SamplingDIO | E
.’ i Display 1
i e e = I N A IS .

Figure 2. Sequence diagram for the SimpleScada application.

Every time a new average value is generated, the Log operation is asynchronously invoked on the
LoggingTh thread for passing the data to be stored. Also in a mutually exclusive way, this operation

JSimMAST working example

accesses to the previous queue for retrieving the corresponding value, which later will be recorded in
the database. Since the invocation on the LoggingTh thread is asynchronous, the control flow continues
on the SamplingThO by invoking on it the GenerateDispIMssg operation for the generation of the
information to be displayed on the screen as well as its deposit on another queue similar to the prior
one. The purpose is to invoke, asynchronously again, the GetDisplayData operation on the DisplayTh
thread. Similarly to the Log operation, this operation for obtaining displayable data accesses to that
second queue for retrieving the data that will be displayed on the screen by invoking on the same
thread — DisplayTh — the Display operation.

Regarding the case of the flow control directed to the persistent record in the database, after invoking
on the LoggingTh thread the Log operation, a message is transmitted through the Ethernet100M
network by invoking on the LogCCh100M communication channel the TxLoggingMssg operation.
However, since the connection between the LocalProc and DBProc nodes is not implemented directly
through the Ethernetl00M network but exists a switch that links this network with another one -
EthernetlG — connected to DBProc, it is necessary that this switch distributes the message by invoking
again the TxLoggingMssg operation, this time on the LogCCh1G communication channel associated to
the EthernetlG network. Last, the StoreLoggingMssg operation is invoked on the DBAgentTh thread
responsible for the storage in the database. Figure 3 depicts how the sequence diagram of Figure 2
continues regarding the logging control flow.

SamplingThO| | LoggingTh | | LogCCh100M Switché LogCChlG DBAgentTh

i [Log

> TxLoggingMss
e -l g9ing Vg MessageDelivery
HJ—" , TxLoggingMssg

'_—>'_

_IStoreLogginngsg
Every operation is modelled by a probabilistic variable featured by the execution times in the worst,
average and best cases, with respect to a normalized processor. In addition, every operation specifies

the mutexes (LogMtx and DisplMtx) that are required for its execution. For instance, the
GenerateLogMssg operation requires locking the LogMtx mutex.

Figure 3. Sequence diagram for logging control flow

4 SimpleScada MAST2.0 model

The MAST model corresponding to this system is provided in XML serialized format in the
SimpleScada.mdl.xml file. The main model data are shown in the following activity diagram.

JSimMAST working example

SamplingThO SamplingCCh AcqThX SamplingCCh SamplingThO
T =50 ms weet = 10 us max = 32 bit weet = 25 us max = 48 bits weet = 25 us
f=0.0ms acet =10 us avg = 32 hit acet =25 us avg = 48 bits acet =22 us
max jitter =0 bcet = 10 us min = 32 bit bcet = 25 us min = 48 bits bcet = 21 us

ReadValue]%b[ReturnValue]MP[ProcessValue

SamplingThO
weet = 27 us HardGlobalDeadline
acet = 27 us ref: SamplTrg0
bcet = 27 us deadline = 5ms
DispIMtx DisplayTh
- S0.e11 weet = 25 us DisplayTh

SamplingThO - acet =22 us weet = 15 ms

weet = 1.3 ms bcet = 20 us acet=15ms

acet=1.1ms DispIMtx bcet =15 ms

bcet=1.0 ms e10

LogMutex >

S0.¢8 GetDisplData Display el8

ell, el2, el3, el4, el5

GenLogMssg
TxLogginngsg]st[MessageDeIiver]Lgb[TxLoggingMssg e19 StoreLoggingMssg €20
el, e2, e3, e4, e5——p l

LoggingTh LogCCh100M LogCChl1G DBAgentTh
weet = 2.5 ms max = 512 bit max = 512 bit weet = 2.7 ms
acet=2.5ms avg = 512 bit avg = 512 bit acet=2.0 ms
bcet=2.5ms min = 512 bit min = 512 bit bcet=1.8 ms
LogMtx

MaxQueueSizeReq
maxNumEvents = 3

*

MAST >

@ JSimMAST working example

	CTR -Computers and Real-Time Group
	Electronics and Computers Department
	University of Cantabria (Spain)
	1 Introduction
	2 SimpleScada elements
	2.1 Nodes
	2.2 Real-time design threads
	2.3 Other schedulable resources
	2.4 Passive resources

	3 SimpleScada at work
	4 SimpleScada MAST2.0 model

